The tissue mechanics governing vocal-fold closure and collision during phonation are modeled in order to evaluate the role of elastic forces in glottal closure and in the development of stresses that may be a risk factor for pathology development. The model is a nonlinear dynamic contact problem that incorporates a three-dimensional, linear elastic, finite-element representation of a single vocal fold, a rigid midline surface, and quasistatic air pressure boundary conditions. Qualitative behavior of the model agrees with observations of glottal closure during normal voice production. The predicted relationship between subglottal pressure and peak collision force agrees with published experimental measurements. Accurate predictions of tissue dynamics during collision suggest that elastic forces play an important role during glottal closure and are an important determinant of aerodynamic variables that are associated with voice quality. Model predictions of contact force between the vocal folds are directly proportional to compressive stress (r2=0.79), vertical shear stress (r2=0.69), and Von Mises stress (r2=0.83) in the tissue. These results guide the interpretation of experimental measurements by relating them to a quantity that is important in tissue damage.

1.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
(
2000
). “
A finite-element model of vocal-fold vibration
,”
J. Acoust. Soc. Am.
108
,
3003
3012
.
2.
Alipour
,
F.
,
Montequin
,
D.
, and
Tayama
,
N.
(
2001
). “
Aerodynamic profiles of a hemilarynx with a vocal tract
,”
Ann. Otol. Rhinol. Laryngol.
110
,
550
555
.
3.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2000
). “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
,
443
54
.
4.
Alipour, F., and Titze, I. R. (1996). “Combined simulation of two-dimensional airflow and vocal fold vibration,” in Vocal Fold Physiology: Controlling Complexity and Chaos, edited by P. J. Davis and N. H. Fletcher (Singular, San Diego), pp. 17–30.
5.
Alipour-Haghighi
,
F.
, and
Titze
,
I. R.
(
1991
). “
Elastic models of vocal fold tissues
,”
J. Acoust. Soc. Am.
90
,
1326
1331
.
6.
Berry
,
D. A.
, and
Titze
,
I. R.
(
1996
). “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
100
,
3345
3354
.
7.
Chandrupatla, T. R., and Belegundu, A. D. (1997). Introduction to Finite Elements in Engineering, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ), p. 17.
8.
Dikkers, F. G. (1994). Benign Lesions of the Vocal Folds: Clinical and Histopathological Aspects (Drukkerij Van Denderen B. V., Groningen, The Netherlands).
9.
Hess
,
M. M.
,
Verdolini
,
K.
,
Bierhals
,
W.
,
Mansmann
,
U.
, and
Gross
,
M.
(
1998
). “
Endolaryngeal contact pressures
,”
J. Voice
12
,
50
67
.
10.
Hirano, M., Kurita, S., and Nakashima, T. (1983). “Growth, development and aging of human vocal folds,” in Vocal Fold Physiology; Contemporary Research and Clinical Issues, edited by D. M. Bless and J. H. Abbs (College Hill, San Diego), pp. 23–43.
11.
Holmberg
,
E. B.
,
Hillman
,
R. E.
, and
Perkell
,
J. S.
(
1988
). “
Glottal air-flow and transglottal air-pressure measurements for male and female speakers in soft, normal, and loud voice
,”
J. Acoust. Soc. Am.
84
,
511
529
.
12.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
13.
Jiang
,
J. J.
,
Diaz
,
C. E.
, and
Hanson
,
D. G.
(
1998
). “
Finite element modeling of vocal fold vibration in normal phonation and hyperfunctional dysphonia: implications for the pathogenesis of vocal nodules
,”
Ann. Otol. Rhinol. Laryngol.
107
,
603
610
.
14.
Jiang
,
J.
,
Lin
,
E.
, and
Hanson
,
D. G.
(
2000
). “
Voice disorders and phonosurgery. I. Vocal fold physiology
,”
Otolaryngol. Clin. North Am.
33
,
699
718
.
15.
Jiang
,
J. J.
, and
Titze
,
I. R.
(
1994
). “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
,
132
144
.
16.
Kakita, Y., Hirano, M., and Ohmaru, K. (1981). “Physical properties of vocal tissue: measurements on excised larynges,” in Vocal Fold Physiology, edited by M. Hirano and K. Stevens (University of Tokyo Press, Tokyo), pp. 377–398.
17.
Kaneko, T., Masuda, T., Akiki, S., Suzuki, H., Hayasaki, K., and Komatsu, K. (1987). “Resonance characteristics of the human vocal fold in vivo and in vitro by an impulse excitation,” in Laryngeal Function in Phonation and Respiration, edited by T. Baer, C. Sasaski, and K. S. Harris (Little, Brown, Boston), pp. 349–365.
18.
Kuo, H.-K. J. (1998). “Voice Source Modeling and Analysis of Speakers with Vocal-Fold Nodules,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, MA), pp. 41–119.
19.
Min
,
Y. B.
,
Titze
,
I. R.
, and
Alipour-Haghighi
,
F.
(
1995
). “
Stress–strain response of the human vocal ligament
,”
Ann. Otol. Rhinol. Laryngol.
104
,
563
569
.
20.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
21.
Titze
,
I. R.
(
1973
). “
The human vocal cords: A mathematical model. I
,”
Phonetica
28
,
129
170
.
22.
Titze
,
I. R.
(
1974
). “
The human vocal cords: A mathematical model. II
,”
Phonetica
29
,
1
21
.
23.
Titze
,
I. R.
, and
Strong
,
W. J.
(
1975
). “
Normal modes in vocal cord tissues
,”
J. Acoust. Soc. Am.
57
,
736
749
.
24.
Titze
,
I. R.
(
1994
). “
Mechanical stress in phonation
,”
J. Voice
8
,
99
105
.
25.
Titze
,
I. R.
, and
Talkin
,
D. T.
(
1979
). “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
,
60
74
.
26.
Zeitels
,
S. M.
(
1998
). “
Phonosurgery—past, present, and future
,”
Operative Tech. Otolaryngol. Head Neck Surg.
9
,
179
.
27.
Zemlin, W. R. (1998). Speech and Hearing Science: Anatomy and Physiology, 4th ed. (Allyn and Bacon, Boston), pp. 137–152.
This content is only available via PDF.
You do not currently have access to this content.