Investigations of the development of auditory form and function have, with a few exceptions, thus far been largely restricted to birds and mammals, making it difficult to postulate evolutionary hypotheses. Teleost fishes represent useful models for developmental investigations of the auditory system due to their often extensive period of posthatching development and the diversity of auditory specializations in this group. Using the auditory brainstem response and morphological techniques we investigated the development of auditory form and function in zebrafish (Danio rerio) ranging in size from 10 to 45 mm total length. We found no difference in auditory sensitivity, response latency, or response amplitude with development, but we did find an expansion of maximum detectable frequency from 200 Hz at 10 mm to 4000 Hz at 45 mm TL. The expansion of frequency range coincided with the development of Weberian ossicles in zebrafish, suggesting that changes in hearing ability in this species are driven more by development of auxiliary specializations than by the ear itself. We propose a model for the development of zebrafish hearing wherein the Weberian ossicles gradually increase the range of frequencies available to the inner ear, much as middle ear development increases frequency range in mammals.

1.
Bang
,
P. I.
,
Sewell
,
W. F.
, and
Malicki
,
J. J.
(
2001
). “
Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio)
,”
J. Comp. Neurol.
438
,
173
190
.
2.
Blaxter
,
J. H. S.
, and
Batty
,
R. S.
(
1985
). “
The development of startle responses in herring larvae
,”
J. Mar. Biol. Assoc. U.K.
65
,
737
750
.
3.
Boatwright-Horowitz
,
S. S.
, and
Megela Simmons
,
A.
(
1995
). “
Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain
,”
J. Comp. Physiol., A
177
,
577
590
.
4.
Boatwright-Horowitz
,
S. S.
, and
Megela Simmons
,
A.
(
1997
). “
Transient ‘deafness’ accompanies auditory development during metamorphosis from tadpole to frog
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
14877
14882
.
5.
Brittan-Powell
,
E. F.
, and
Dooling
,
R. J.
(
2000
). “
Development of auditory sensitivity in budgerigars
,”
J. Acoust. Soc. Am.
107
,
2785
.
6.
Chang
,
J. S. Y.
,
Popper
,
A. N.
, and
Saidel
,
W. M.
(
1992
). “
Heterogeneity of sensory hair cells in a fish ear
,”
J. Comp. Neurol.
324
,
621
640
.
7.
Corwin
,
J. T.
(
1981
). “
Postembryonic production and aging of inner ear hair cells in sharks
,”
J. Comp. Neurol.
201
,
541
553
.
8.
Corwin
,
J. T.
(
1983
). “
Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity
,”
J. Comp. Neurol.
217
,
345
356
.
9.
Corwin
,
J. T.
,
Bullock
,
T. H.
, and
Schweitzer
,
J.
(
1982
). “
The auditory brain stem response in five vertebrate classes
,”
Electroencephalogr. Clin. Neurophysiol.
54
,
629
641
.
10.
Dingerkus
,
G.
, and
Uhler
,
L. D.
(
1977
). “
Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage
,”
Stain Technol.
52
,
229
232
.
11.
Dmitrieva
,
L. P.
, and
Gottlieb
,
G.
(
1992
). “
Development of brainstem auditory pathway in mallard duck embryos and hatchlings
,”
J. Comp. Physiol., A
171
,
665
671
.
12.
Ehret
,
G.
, and
Romand
,
R.
(
1981
). “
Postnatal development of absolute auditory thresholds in kittens
,”
J. Comp. Physiol. Psychol.
95
,
304
311
.
13.
Fay
,
R.
(
1978
). “
Coding of information in single auditory-nerve fibers of the goldfish
,”
J. Acoust. Soc. Am.
63
,
136
146
.
14.
Fay
,
R. R.
(2000). “Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus),” JARO 01, 120–128.
15.
Fay
,
R. R.
, and
Popper
,
A. N.
(
1974
). “
Acoustic stimulation of the ear of the goldfish (Carassius auratus)
,”
J. Exp. Biol.
61
,
243
260
.
16.
Fay
,
R. R.
, and
Popper
,
A. N.
(
2000
). “
Evolution of hearing in vertebrates: the inner ears and processing
,”
Hear. Res.
149
,
1
10
.
17.
Fineran
,
J. J.
, and
Hastings
,
M. C.
(
2000
). “
A mathematical analysis of the peripheral auditory system mechanics in the goldfish (Carassius auratus)
,”
J. Acoust. Soc. Am.
108
,
1308
1321
.
18.
Flock
,
Å.
(
1965
). “
Electron microscopic and electrophysiological studies on the lateral line canal organ
,”
Acta Oto-Laryngol., Suppl.
199
,
1
90
.
19.
Fuiman
,
L. A.
,
Poling
,
K. R.
, and
Higgs
,
D. M.
(
1998
). “
Quantifying developmental progress for comparative studies of larval fishes
,”
Copeia
1998
,
602
611
.
20.
Fuiman
,
L. A.
,
Smith
,
M. E.
, and
Malley
,
V. N.
(
1999
). “
Ontogeny of routine swimming speed and startle responses in red drum, with a comparison of responses to acoustic and visual stimuli
,”
J. Fish Biol.
55
,
215
226
.
21.
Furukawa
,
T.
, and
Ishii
,
Y.
(
1967
). “
Neurophysiological studies on hearing in goldfish
,”
J. Neurophysiol.
30
,
1377
1403
.
22.
Geal-Dor
,
M.
,
Freeman
,
S.
,
Li
,
G.
, and
Sohmer
,
H.
(
1993
). “
Development of hearing in neonatal rats: air and bone conducted ABR thresholds
,”
Hear. Res.
69
,
236
242
.
23.
Grande, T., and Young, B. (Submitted). “Ontogeny of the Weberian apparatus in the zebrafish Danio rerio (Ostariophysi, Cypriniformes),” Can J. Zool.
24.
Gray
,
L.
(
1993
). “
Developmental changes in chickens’ masked thresholds
,”
Dev. Psychobiol.
26
,
447
457
.
25.
Gray
,
L.
, and
Rubel
,
E. W.
(
1985
). “
Development of absolute thresholds in chickens
,”
J. Acoust. Soc. Am.
77
,
1162
1172
.
26.
Haddon
,
C.
, and
Lewis
,
J.
(
1996
). “
Early ear development in the embryo of the zebrafish, Danio rerio
,”
J. Comp. Neurol.
365
,
113
128
.
27.
Hall, J. W. (1992). Handbook of Auditory Evoked Responses (Allyn and Bacon, Boston).
28.
Hawkins
,
A. D.
, and
Sand
,
O.
(
1977
). “
Directional hearing in the median vertical plane by the cod
,”
J. Comp. Physiol. [A]
122
,
1
8
.
29.
Higgs
,
D. M.
,
Souza
,
M. J.
,
Wilkins
,
H. R.
,
Presson
,
J. C.
, and
Popper
,
A. N.
(2002a). “Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio),” JARO 3, 174–184.
30.
Higgs
,
D. M.
,
Souza
,
M. J.
,
Wilkins
,
H. R.
,
Presson
,
J. C.
, and
Popper
,
A. N.
(2002b). “Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio) ERRATUM,” JARO 3, 222.
31.
Hill
,
K. G.
,
Cone-Wesson
,
B.
, and
Liu
,
G.-B.
(
1998
). “
Development of auditory function in the tammar wallaby Macropus eugenii
,”
Hear. Res.
117
,
97
106
.
32.
Iwashita
,
A.
,
Sakamoto
,
M.
,
Kojima
,
T.
,
Watanabe
,
Y.
, and
Soeda
,
H.
(1999). “Growth effects on the auditory threshold of Red Sea bream,” Nippon Suisan Gakkaishi 65, 833–838.
33.
Kenyon
,
T. N.
(
1996
). “
Ontogenetic changes in the auditory sensitivity of damselfishes (Pomacentridae)
,”
J. Comp. Physiol., A
179
,
553
561
.
34.
Kenyon
,
T. N.
,
Ladich
,
F.
, and
Yan
,
H. Y.
(
1998
). “
A comparative study of hearing ability in fishes: the auditory brainstem response approach
,”
J. Comp. Physiol.
182
,
307
318
.
35.
Klein
,
A. J.
(
1984
). “
Frequency and age-dependent auditory evoked potential thresholds in infants
,”
Hear. Res.
16
,
291
297
.
36.
Kuse
,
H.
, and
Okaniwa
,
A.
(
1993
). “
Postnatal development of the auditory brainstem response (ABR) in beagles
,”
Exp. Anim.
42
,
377
382
.
37.
Lanford
,
P. J.
,
Platt
,
C.
, and
Popper
,
A. N.
(
2000
). “
Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear
,”
Hear. Res.
143
,
1
13
.
38.
Lombarte
,
A.
, and
Popper
,
A. N.
(
1994
). “
Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei)
,”
J. Comp. Neurol.
345
,
419
428
.
39.
Lu
,
Z.
, and
Popper
,
A. N.
(
2001
). “
Neural response directionality correlates of hair cell orientation in a teleost fish
,”
J. Comp. Physiol., A
187
,
453
465
.
40.
Mann
,
D.
,
Higgs
,
D.
,
Tavolga
,
W.
,
Souza
,
M.
, and
Popper
,
A. N.
(
2001
). “
Ultrasound detection by clupeiform fishes
,”
J. Acoust. Soc. Am.
109
,
3048
3054
.
41.
Moeng
,
R.
, and
Popper
,
A. N.
(
1984
). “
Auditory responses of saccular neurons of the catfish, Ictalurus punctatus
,”
J. Comp. Physiol.
155
,
615
624
.
42.
Moore
,
D. R.
, and
Irvine
,
I. F.
(
1979
). “
The development of some peripheral and central auditory responses in the neonatal cat
,”
Brain Res.
163
,
49
59
.
43.
Platt
,
C.
(
1977
). “
Hair cell distribution and orientation in goldfish otolith organs
,”
J. Comp. Neurol.
172
,
283
298
.
44.
Platt
,
C.
(
1993
). “
Zebrafish inner ear sensory surfaces are similar to those in goldfish
,”
Hear. Res.
65
,
133
140
.
45.
Popper
,
A. N.
(
1971
). “
The effects of fish size on auditory capacities of the goldfish
,”
J. Aud Res.
XI
,
239
247
.
46.
Popper
,
A. N.
, and
Hoxter
,
B.
(
1984
). “
Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation
,”
Hear. Res.
15
,
133
142
.
47.
Popper
,
A. N.
,
Chan
,
A. T. H.
, and
Clarke
,
N. L.
(
1973
). “
An evaluation of methods for behavioral investigations of teleost audition
,”
Behav. Res. Methods Instrum.
5
,
470
472
.
48.
Popper
,
A. N.
,
Saidel
,
W. M.
, and
Chang
,
J. S. Y.
(
1993
). “
Two types of sensory hair cell in the saccule of a teleost fish
,”
Hear. Res.
64
,
211
216
.
49.
Popper A. N., Rogers P. H., Saidel W. M., and Cox, M. (1988). “The role of the fish ear in sound processing,” in Sensory Biology of Aquatic Animals, edited by J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (Springer-Verlag, New York), pp. 687–710.
50.
Pujol
,
R.
, and
Marty
,
R.
(
1970
). “
Postnatal maturation in the cochlea of the cat
,”
J. Comp. Neurol.
139
,
115
126
.
51.
Riley
,
B. B.
,
Zhu
,
C.
,
Janetopoulos
,
C.
, and
Aufderheide
,
K. J.
(
1997
). “
A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish
,”
Dev. Biol.
191
,
191
201
.
52.
Rogers, P. H., and Cox, M. (1988). “Underwater sound as a biological stimulus,” in Sensory Biology of Aquatic Animals, edited by J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (Springer-Verlag, New York), pp. 131–150.
53.
Rogers
,
P. H.
,
Popper
,
A. N.
,
Cox
,
M.
, and
Saidel
,
W. M.
(
1988
). “
Processing of acoustic signals in the auditory system of bony fish
,”
J. Acoust. Soc. Am.
83
,
338
349
.
54.
Rubel, E. W. (1978). “Ontogeny of structure and function in the vertebrate auditory system,” in Handbook of Sensory Physiology Vol. IX, edited by M. Jacobson (Springer-Verlag, New York), pp. 135–237.
55.
Saunders
,
J. C.
,
Relkin
,
E. M.
,
Rosowski
,
J. J.
, and
Bahl
,
C.
(
1983
). “
Changes in middle-ear input admittance during postnatal auditory development in chicks
,”
Hear. Res.
24
,
227
235
.
56.
Schofner
,
W. P.
, and
Feng
,
A. S.
(
1981
). “
Post-metamorphic development of the frequency selectivities and sensitivities of the peripheral auditory system of the bullfrog Rana catesbiana
,”
J. Neurophysiol.
93
,
181
196
.
57.
Schuijf
,
A.
, and
Buwalda
,
R. J. A.
(
1975
). “
On the mechanism of directional hearing in cod (Gadus morhua L.)
,”
J. Comp. Physiol.
98
,
333
343
.
58.
von Frisch
,
K.
(
1938
). “
The sense of hearing in fish
,”
Nature (London)
141
,
8
11
.
59.
Walsh
,
E. J.
,
McGee
,
J.
, and
Javel
,
E.
(
1986a
). “
Development of auditory-evoked potentials in the cat. I. Onset of response and development of sensitivity
,”
J. Acoust. Soc. Am.
79
,
712
724
.
60.
Walsh
,
E. J.
,
McGee
,
J.
, and
Javel
,
E.
(
1986b
). “
Development of auditory-evoked potentials in the cat. II. Wave latencies
,”
J. Acoust. Soc. Am.
79
,
725
744
.
61.
Walsh
,
E. J.
,
McGee
,
J.
, and
Javel
,
E.
(
1986c
). “
Development of auditory-evoked potentials in the cat. III. Wave amplitudes
,”
J. Acoust. Soc. Am.
79
,
745
754
.
62.
Waterman
,
R. E.
, and
Bell
,
D. H.
(
1984
). “
Epithelial fusion during early semicircular canal formation in the embryonic zebrafish, Danio rerio
,”
Anat. Rec.
210
,
101
114
.
63.
Werner, L. A., and Gray, L. (1998). “Behavioral studies of hearing development,” in Development of the Auditory System, edited by E. W. Rubel, A. N. Popper, and R. R. Fay (Springer-Verlag, New York), pp. 12–79.
64.
Wysocki
,
L. E.
, and
Ladich
,
F.
(
2001
). “
The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata
,”
J. Comp. Physiol., A
187
,
177
187
.
65.
Yan
,
H. Y.
, and
Curtsinger
,
W. S.
(
2000
). “
The otic gasbladder as an ancillary auditory structure in a mormyrid fish
,”
J. Comp. Physiol., A
186
,
595
602
.
66.
Yan
,
H. Y.
,
Fine
,
M. L.
,
Horn
,
N. S.
, and
Colón
,
W. E.
(
2000
). “
Variability in the role of the gasbladder in fish audition
,”
J. Comp. Physiol., A
186
,
435
445
.
67.
Zar, J. H. (1984). Biostatistical Analysis, 2nd ed. (Prentice–Hall, Englewood Cliffs, NJ).
This content is only available via PDF.
You do not currently have access to this content.