This paper provides a temporal model of the direct and inverse scattering problem for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having a rigid frame. This new time domain model of wave propagation takes into account the viscous and thermal losses of the medium as described by the model of Johnson et al. [D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid. Mech. 176, 379 (1987)] and Allard [J. F. Allard (Chapman and Hall, London, 1993)] modified by a fractional calculus based method applied in the time domain. This paper is devoted to the analytical calculus of acoustic field in a slab of porous material. The main result is the derivation of the expression of the scattering operators (reflection and transmission) which are the responses of the medium to an incident acoustic pulse. In this model the reflection operator is the sum of two contributions: the first interface and the bulk of the medium. Experimental and numerical results are given as a validation of our model.

1.
J. F. Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials (Chapman and Hall, London, 1993).
2.
D. Lafarge, “Sound propagation in porous materials having a rigid frame saturated by gas” (in French), Ph.D. Dissertation, Université du Maine (1993).
3.
L. Päivärinta and E. Somersalo, Eds., Inverse Problems in Mathematical Physics (Springer, Berlin, 1993).
4.
Z. E. A.
Fellah
and
C.
Depollier
, “
Transient acoustic wave propagation in rigid porous media: A time-domain approach
,”
J. Acoust. Soc. Am.
107
,
683
688
(
2000
).
5.
Z. E. A.
Fellah
and
C.
Depollier
, “
On the propagation of acoustic pulses in porous rigid media: A time domain approach
,”
J. Comput. Acoust.
9
,
1163
1173
(
2001
).
6.
Z. E. A.
Fellah
,
C.
Depollier
, and
M.
Fellah
, “
An approach to direct and inverse time-domain scattering of acoustic waves from rigid porous materials by a fractional calculus based method
,”
J. Sound Vib.
244
,
359
366
(
2001
).
7.
Z. E. A.
Fellah
,
C.
Depollier
, and
M.
Fellah
, “
Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurements
,”
Acta Acust. (Beijing)
88
,
34
39
(
2002
).
8.
T. L.
Szabo
, “
Time domain wave equations for lossy media obeying a frequency power law
,”
J. Acoust. Soc. Am.
96
,
491
500
(
1994
).
9.
M.
Caputo
, “
Vibrations of an infinite plate with a frequency independent Q
,”
J. Acoust. Soc. Am.
60
,
634
639
(
1976
).
10.
R. L.
Bagley
and
P. J.
Torvik
, “
On the fractional calculus Model of Viscoelastic Behavior
,”
J. Rheol.
30
,
133
155
(
1983
).
11.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
12.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
13.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
14.
C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier, New York, 1949).
15.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science, Amsterdam, 1993).
16.
Z. E. A. Fellah, “Propagation of acoustics waves in porous media: Temporal approach,” Ph.D. Dissertation, Université du Maine, France (2000).
17.
E. W. Weisstein, Concise Encyclopedia of Mathematics (Chapman and Hall, Boca Raton, 1999).
18.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
N. R.
Brown
,
M.
Melon
, and
B.
Castagnède
, “
Determination of the viscous and thermal characteristics lengths of plastic foams by ultrasonic measurements in helium and air
,”
J. Appl. Phys.
80
,
2009
2012
(
1996
).
19.
N.
Brown
,
M.
Melon
,
V.
Montembault
,
B.
Castagnède
,
W.
Lauriks
, and
P.
Leclaire
, “
Evaluation of viscous characteristic length of air-saturated porous materials form the ultrasonic dispersion curve
,”
C. R. Acad. Sci. Paris II
322
,
121
127
(
1996
).
20.
M. Henry, “Measurement of porous media parameters. Experimental study of acoustic behavior of plastic foams at low frequency range,” Ph.D. Dissertation, Université du Maine (1997).
21.
L. L.
Beranek
, “
Acoustic impedance of porous materials
,”
J. Acoust. Soc. Am.
13
,
248
(
1942
).
22.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurements of the porosity
,”
J. Acoust. Soc. Am.
89
,
910
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.