Acoustic trauma degrades the auditory nerve’s tonotopic representation of acoustic stimuli. Recent physiological studies have quantified the degradation in responses to the vowel /ɛ/ and have investigated amplification schemes designed to restore a more correct tonotopic representation than is achieved with conventional hearing aids. However, it is difficult from the data to quantify how much different aspects of the cochlear pathology contribute to the impaired responses. Furthermore, extensive experimental testing of potential hearing aids is infeasible. Here, both of these concerns are addressed by developing models of the normal and impaired auditory peripheries that are tested against a wide range of physiological data. The effects of both outer and inner hair cell status on model predictions of the vowel data were investigated. The modeling results indicate that impairment of both outer and inner hair cells contribute to degradation in the tonotopic representation of the formant frequencies in the auditory nerve. Additionally, the model is able to predict the effects of frequency-shaping amplification on auditory nerve responses, indicating the model’s potential suitability for more rapid development and testing of hearing aid schemes.

1.
Anderson
,
D. J.
,
Rose
,
J. E.
,
Hind
,
J. E.
, and
Brugge
,
J. F.
(
1971
). “
Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects
,”
J. Acoust. Soc. Am.
49
,
1131
1139
.
2.
Bruce, I. C., Young, E. D., and Sachs, M. B. (1999). “Modification of an auditory-periphery model to describe the effects of acoustic trauma on auditory nerve response,” in Abstracts of the 22nd ARO Midwinter Meeting.
3.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
4.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse responses of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
105
,
2384
2391
.
5.
Costalupes
,
J. A.
,
Rich
,
N. C.
, and
Ruggero
,
M. A.
(
1987
). “
Effects of excitatory and non-excitatory suppressor tones on two-tone rate suppression in auditory nerve fibers
,”
Hear. Res.
26
,
155
164
.
6.
Delgutte
,
B.
(
1990
). “
Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level
,”
Hear. Res.
49
,
225
246
.
7.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987a
). “
A composite auditory model for processing speech sounds
,”
J. Acoust. Soc. Am.
82
,
2001
2012
.
8.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987b
). “
Responses of auditory-nerve fibers to nasal consonant-vowel syllables
,”
J. Acoust. Soc. Am.
82
,
1977
1988
.
9.
Deng
,
L.
,
Geisler
,
C. D.
, and
Greenberg
,
S.
(
1987
). “
Responses of auditory-nerve fibers to multiple-tone complexes
,”
J. Acoust. Soc. Am.
82
,
1989
2000
.
10.
Duifhuis
,
H.
(
1976
). “
Cochlear nonlinearity and second filter: Possible mechanism and implications
,”
J. Acoust. Soc. Am.
59
,
408
423
.
11.
Gao
,
W. Y.
,
Ding
,
D. L.
,
Zheng
,
X. Y.
,
Ruan
,
F. M.
, and
Liu
,
Y. J.
(
1992
). “
A comparison of changes in the stereocilia between temporary and permanent hearing losses in acoustic trauma
,”
Hear. Res.
62
,
27
41
.
12.
Geisler
,
C. D.
(
1981
). “
A model for discharge patterns of primary auditory-nerve fibers
,”
Brain Res.
212
,
198
201
.
13.
Geisler
,
C. D.
(
1985
). “
Effects of a compressive nonlinearity in a cochlear model
,”
J. Acoust. Soc. Am.
78
,
257
260
.
14.
Geisler
,
C. D.
(
1989
). “
The responses of models of “high-spontaneous” auditory-nerve fibers in a damaged cochlea to speech syllables in noise
,”
J. Acoust. Soc. Am.
86
,
2192
2205
.
15.
Giguère
,
C.
, and
Woodland
,
P. C.
(
1994
). “
A computational model of the auditory periphery for speech and hearing research. II. Descending paths
,”
J. Acoust. Soc. Am.
95
,
343
349
.
16.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering
,”
Hear. Res.
49
,
39
60
.
17.
Goldstein
,
J. L.
(
1995
). “
Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: Data and MBPNL model
,”
Hear. Res.
89
,
52
68
.
18.
Guinan
, Jr.,
J. J.
, and
Peake
,
W. T.
(
1967
). “
Middle-ear characteristics of anesthetized cats
,”
J. Acoust. Soc. Am.
41
,
1237
1261
.
19.
Harrison
,
R. V.
(
1981
). “
Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas
,”
J. Acoust. Soc. Am.
70
,
1036
1044
.
20.
Heinz
,
M. G.
,
Zhang
,
X.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
Auditory nerve model for predicting performance limits of normal and impaired listeners
,”
ARLO
2
,
91
96
.
21.
Irino
,
T.
, and
Patterson
,
R. D.
(
2001
). “
A compressive gammachirp auditory filter for both physiological and psychophysical data
,”
J. Acoust. Soc. Am.
109
,
2008
2022
.
22.
Javel
,
E.
,
Geisler
,
C. D.
, and
Ravindran
,
A.
(
1978
). “
Two-tone suppression in auditory nerve of the cat: Rate-intensity and temporal analyses
,”
J. Acoust. Soc. Am.
63
,
1093
1104
.
23.
Javel
,
E.
,
McGee
,
J.
,
Walsh
,
E. J.
,
Farley
,
G. R.
, and
Gorga
,
M. P.
(
1983
). “
Suppression of auditory nerve responses. II. Suppression threshold and growth, iso-suppression contours
,”
J. Acoust. Soc. Am.
74
,
801
813
.
24.
Jenison
,
R. L.
,
Greenberg
,
S.
,
Kluender
,
K. R.
, and
Rhode
,
W. S.
(
1991
). “
A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers
,”
J. Acoust. Soc. Am.
89
,
773
786
.
25.
Johnstone
,
B. M.
,
Patuzzi
,
R.
, and
Yates
,
G. K.
(
1986
). “
Basilar membrane measurements and the travelling wave
,”
Hear. Res.
22
,
147
153
.
26.
Kates
,
J. M.
(
1995
). “
Two-tone suppression in a cochlear model
,”
IEEE Trans. Speech Audio Process.
3
,
396
406
.
27.
Kiang
,
N. Y.
,
Liberman
,
M. C.
, and
Levine
,
R. A.
(
1976
). “
Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds
,”
Ann. Otol. Rhinol. Laryngol.
85
,
752
768
.
28.
Liberatore, A., Luchetta, A., Manetti, S., and Piccirilli, M. C. (1995). “A new symbolic program package for the interactive design of analog circuits,” in ISCAS’95, IEEE International Symposium on Circuits and Systems, 1995, Vol. 3 (IEEE, Piscataway, NJ), pp. 2209–2212.
29.
Liberman
,
M. C.
(
1978
). “
Auditory nerve response from cats raised in a low noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
30.
Liberman
,
M. C.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift
,”
Hear. Res.
16
,
33
41
.
31.
Liberman
,
M. C.
, and
Dodds
,
L. W.
(
1984a
). “
Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves
,”
Hear. Res.
16
,
55
74
.
32.
Liberman
,
M. C.
, and
Dodds
,
L. W.
(
1984b
). “
Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates
,”
Hear. Res.
16
,
43
53
.
33.
Liberman
,
M. C.
, and
Kiang
,
N. Y.-S.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions
,”
Hear. Res.
16
,
75
90
.
34.
Liberman, M. C., and Mulroy, M. J. (1982). “Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology,” in New Perspectives on Noise-Induced Hearing Loss, edited by R. P. Hamernik, D. Henderson, and R. Salvi (Raven, New York), pp. 105–135.
35.
Lin
,
T.
, and
Guinan
, Jr.,
J. J.
(
2000
). “
Auditory-nerve-fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives
,”
J. Acoust. Soc. Am.
107
,
2615
2630
.
36.
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2001
). “
A human nonlinear cochlear filterbank
,”
J. Acoust. Soc. Am.
110
,
3107
3118
.
37.
Lybarger
,
S. F.
(
1978
). “
Selective amplification-a review and evaluation
,”
J. Am. Audiol Soc.
3
,
258
266
.
38.
Matthews, J. W. (1983). “Modeling reverse middle ear transmission of acoustic distortion signals,” in Mechanics of Hearing: Proceedings of the IUTAM/ICA Symposium, edited by E. de Boer and M. A. Viergever (Delft U. P., Delft), pp. 11–18.
39.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
40.
Meyer
,
J.
,
Furness
,
D. N.
,
Zenner
,
H.-P.
,
Hackney
,
C. M.
, and
Gummer
,
A. W.
(
1998
). “
Evidence for opening of hair-cell transducer channels after tip-link loss
,”
J. Neurosci.
18
,
6748
6756
.
41.
Miller
,
R. L.
,
Calhoun
,
B. M.
, and
Young
,
E. D.
(
1999a
). “
Contrast enhancement improves the representation of /ɛ/-like vowels in the hearing-impaired auditory nerve
,”
J. Acoust. Soc. Am.
106
,
2693
2708
.
42.
Miller
,
R. L.
,
Calhoun
,
B. M.
, and
Young
,
E. D.
(
1999b
). “
Discriminability of vowel representations in cat auditory-nerve fibers after acoustic trauma
,”
J. Acoust. Soc. Am.
105
,
311
325
.
43.
Miller
,
R. L.
,
Schilling
,
J. R.
,
Franck
,
K. R.
, and
Young
,
E. D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ɛ/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
,
3602
3616
.
44.
Moore
,
B. C.
,
Glasberg
,
B. R.
, and
Vickers
,
D. A.
(
1999
). “
Further evaluation of a model of loudness perception applied to cochlear hearing loss
,”
J. Acoust. Soc. Am.
106
,
898
907
.
45.
Moore
,
B. C.
,
Huss
,
M.
,
Vickers
,
D. A.
,
Glasberg
,
B. R.
, and
Alcantara
,
J. I.
(
2000
). “
A test for the diagnosis of dead regions in the cochlea
,”
Br. J. Audiol.
34
,
205
224
.
46.
Nordmann
,
A. S.
,
Bohne
,
B. A.
, and
Harding
,
G. W.
(
2000
). “
Histopathological differences between temporary and permanent threshold shift
,”
Hear. Res.
139
,
13
30
.
47.
Oppenheim, A. V., and Schafer, R. W. (1989). Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, NJ).
48.
Oxenham
,
A. J.
, and
Plack
,
C. J.
(
1997
). “
A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing
,”
J. Acoust. Soc. Am.
101
,
3666
3675
.
49.
Pang
,
X. D.
, and
Guinan
, Jr.,
J. J.
(
1997
). “
Effects of stapedius-muscle contractions on the masking of auditory-nerve responses
,”
J. Acoust. Soc. Am.
102
,
3576
3586
.
50.
Patterson, R., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1988). “Implementing a gammatone filter bank,” SVOS Final Report: The Auditory Filter Bank.
51.
Payton
,
K. L.
(
1988
). “
Vowel processing by a model of the auditory periphery: A comparison to eighth-nerve responses
,”
J. Acoust. Soc. Am.
83
,
145
162
.
52.
Peake
,
W. T.
,
Rosowski
,
J. J.
, and
Lynch
, III,
T. J.
(
1992
). “
Middle-ear transmission: Acoustic versus ossicular coupling in cat and human
,”
Hear. Res.
57
,
245
268
.
53.
Pfeiffer
,
R. R.
(
1970
). “
A model for two-tone inhibition of single cochlear-nerve fibers
,”
J. Acoust. Soc. Am.
48
,
1373
1378
.
54.
Pickles
,
J. O.
,
Osborne
,
M. P.
, and
Comis
,
S. D.
(
1987
). “
Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig
,”
Hear. Res.
25
,
173
183
.
55.
Plack
,
C. J.
, and
Oxenham
,
A. J.
(
2000
). “
Basilar-membrane nonlinearity estimated by pulsation threshold
,”
J. Acoust. Soc. Am.
107
,
501
507
.
56.
Recio
,
A.
,
Rhode
,
W. S.
,
Kiefte
,
M.
, and
Kluender
,
K. R.
(
2002
). “
Responses to cochlear normalized speech stimuli in the auditory nerve of cat
,”
J. Acoust. Soc. Am.
111
,
2213
2218
.
57.
Robert
,
A.
, and
Eriksson
,
J. L.
(
1999
). “
A composite model of the auditory periphery for simulating responses to complex sounds
,”
J. Acoust. Soc. Am.
106
,
1852
1864
.
58.
Robertson
,
D.
(
1982
). “
Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea
,”
Hear. Res.
7
,
55
74
.
59.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
60.
Robles
,
L.
,
Rhode
,
W. S.
, and
Geisler
,
C. D.
(
1976
). “
Transient response of the basilar membrane measured in squirrel monkeys using the Mossbauer effect
,”
J. Acoust. Soc. Am.
59
,
926
939
.
61.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1991
). “
Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration
,”
Hear. Res.
51
,
215
230
.
62.
Sachs
,
M. B.
, and
Abbas
,
P. J.
(
1974
). “
Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli
,”
J. Acoust. Soc. Am.
56
,
1835
1847
.
63.
Sachs
,
M. B.
, and
Kiang
,
N. Y.
(
1968
). “
Two-tone inhibition in auditory-nerve fibers
,”
J. Acoust. Soc. Am.
43
,
1120
1128
.
64.
Sachs
,
M. B.
, and
Young
,
E. D.
(
1979
). “
Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate
,”
J. Acoust. Soc. Am.
66
,
470
479
.
65.
Sachs
,
M. B.
,
Bruce
,
I. C.
,
Miller
,
R. L.
, and
Young
,
E. D.
(
2002
). “
Biological basis of hearing-aid design
,”
Ann. Biomed. Eng.
30
,
157
168
.
66.
Salvi, R., Henderson, D., and Hamernik, R. (1983). “Physiological bases of sensorineural hearing loss,” in Hearing Research and Theory, edited by J. V. Tobias and E. D. Schubert (Academic, New York), pp. 173–231.
67.
Salvi, R., Perry, J., Hamernik, R. P., and Henderson, D. (1982). “Relationships between cochlear pathologies and auditory nerve and behavioral responses following acoustic trauma,” in New Perspectives on Noise-Induced Hearing Loss, edited by R. P. Hamernik, D. Henderson, and R. Salvi (Raven, New York), pp. 165–188.
68.
Schilling
,
J. R.
,
Miller
,
R. L.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
1998
). “
Frequency-shaped amplification changes the neural representation of speech with noise-induced hearing loss
,”
Hear. Res.
117
,
57
70
.
69.
Schmiedt
,
R. A.
,
Mills
,
J. H.
, and
Adams
,
J. C.
(
1990
). “
Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise
,”
Hear. Res.
45
,
221
236
.
70.
Schmiedt
,
R. A.
,
Zwislocki
,
J. J.
, and
Hamernik
,
R. P.
(
1980
). “
Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns
,”
J. Neurophysiol.
43
,
1367
1389
.
71.
Schoonhoven
,
R.
,
Keijzer
,
J.
,
Versnel
,
H.
, and
Prijs
,
V. F.
(
1994
). “
A dual filter model describing single-fiber responses to clicks in the normal and noise-damaged cochlea
,”
J. Acoust. Soc. Am.
95
,
2104
2121
.
72.
Schroeder
,
M. R.
, and
Hall
,
J. L.
(
1974
). “
Model for mechanical to neural transduction in the auditory receptor
,”
J. Acoust. Soc. Am.
55
,
1055
1060
.
73.
Temchin
,
A. N.
,
Rich
,
N. C.
, and
Ruggero
,
M. A.
(
1997
). “
Low-frequency suppression of auditory nerve responses to characteristic frequency tones
,”
Hear. Res.
113
,
29
56
.
74.
Wiener
,
F. M.
, and
Ross
,
D. A.
(
1946
). “
The pressure distribution in the auditory canal in a progressive sound field
,”
J. Acoust. Soc. Am.
18
,
401
408
.
75.
Wong
,
J. C.
,
Miller
,
R. L.
,
Calhoun
,
B. M.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
1998
). “
Effects of high sound levels on responses to the vowel/eh/in cat auditory nerve
,”
Hear. Res.
123
,
61
77
.
76.
Yates
,
G. K.
(
1990
). “
Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions
,”
Hear. Res.
50
,
145
162
.
77.
Young
,
E. D.
, and
Sachs
,
M. B.
(
1979
). “
Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers
,”
J. Acoust. Soc. Am.
66
,
1381
1403
.
78.
Zhang
,
M.
, and
Zwislocki
,
J. J.
(
1996
). “
Intensity-dependent peak shift in cochlear transfer functions at the cellular level, its elimination by sound exposure, and its possible underlying mechanisms
,”
Hear. Res.
96
,
46
58
.
79.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
This content is only available via PDF.
You do not currently have access to this content.