Optoacoustic imaging is based on the generation of thermoelastic stress waves by heating an object in an optically heterogeneous medium with a short laser pulse. The stress waves contain information about the distribution of structures with preferential optical absorption. Detection of the waves with an array of broadband ultrasound detectors at the surface of the medium and applying a backprojection algorithm is used to create a map of absorbed energy inside the medium. With conventional reconstruction methods a large number of detector elements and filtering of the signals are necessary to reduce backprojection artifacts. As an alternative this study proposes an iterative procedure. The algorithm is designed to minimize the error between measured signals and signals calculated from the reconstructed image. In experiments using broadband optical ultrasound detectors and in simulations the algorithm was used to obtain three-dimensional images of multiple optoacoustic sources. With signals from a planar array of 3×3 detector elements a significant improvement was observed after about 10 iterations compared to the simple radial backprojection. Compared to conventional methods using filtered backprojection, the iterative method is computationally more intensive but requires less time and instrumentation for signal acquisition.

1.
V. A.
Andreev
,
A. A.
Karabutov
,
S. V.
Solomatin
,
E. V.
Savateeva
,
V.
Aleynikov
,
Y. V.
Zhulina
,
R. D.
Fleming
, and
A. A.
Oraevsky
, “
Opto-acoustic tomography of breast cancer with arc-array-transducer
,” in Biomedical Optoacoustics, edited by A. A. Oraevsky [
Proc. SPIE
3916
,
36
47
(
2000
)].
2.
C. G. A.
Hoelen
,
F. F. M.
de Mul
,
R.
Pongers
, and
A.
Dekker
, “
Three-dimensional photoacoustic imaging of blood vessels in tissue
,”
Opt. Lett.
23
,
648
650
(
1998
).
3.
S. L.
Jacques
,
J. A.
Viator
, and
G.
Paltauf
, “
Optoacoustic imaging of tissue blanching during photodynamic therapy of esophageal cancer
,” in Biomedical Optoacoustics, edited by A. A. Oraevsky [
Proc. SPIE
3916
,
322
330
(
2000
)].
4.
A. A.
Oraevsky
,
S. L.
Jacques
,
R. O.
Esenaliev
, and
F. K.
Tittel
, “
Laser-based optoacoustic imaging in biological tissues
,” in Laser-Tissue Interaction V, edited by S. L. Jacques [
Proc. SPIE
2134A
,
122
128
(
1994
)].
5.
J. A.
Viator
,
S. L.
Jacques
, and
S. A.
Prahl
, “
Depth profiling of absorbing soft materials using photoacoustic methods
,”
IEEE J. Sel. Top. Quantum Electron.
5
,
989
996
(
1999
).
6.
A. A.
Karabutov
,
N. B.
Podymova
, and
V. S.
Letokhov
, “
Time-resolved laser optoacoustic tomography of inhomogeneous media
,”
Appl. Phys. B: Lasers Opt.
63
,
545
563
(
1996
).
7.
G.
Paltauf
and
H.
Schmidt-Kloiber
, “
Pulsed optoacoustic characterization of layered media
,”
J. Appl. Phys.
88
,
1624
1631
(
2000
).
8.
E. V. Savateeva, A. A. Karabutov, M. Motamedi, B. Bell, R. Johnigan, and A. A. Oraevsky, “Noninvasive detection and staging of oral cancer in vivo with confocal opto-acoustic tomography,” in Ref. 1, pp. 55–66.
9.
C. G. A.
Hoelen
and
F. F. M.
de Mul
, “
Image reconstruction for photoacoustic scanning of tissue structures
,”
Appl. Opt.
39
,
5872
5883
(
2000
).
10.
R. A.
Kruger
,
D. R.
Reinecke
, and
G. A.
Kruger
, “
Thermoacoustic computed tomography
,”
Med. Phys.
26
,
1832
1837
(
1999
).
11.
G.
Paltauf
,
H.
Schmidt-Kloiber
,
K. P.
Köstli
, and
M.
Frenz
, “
Optical method for two-dimensional ultrasonic detection
,”
Appl. Phys. Lett.
75
,
1048
1050
(
1999
).
12.
G. Paltauf, H. Schmidt-Kloiber, K. P. Koestli, M. Frenz, and H. P. Weber, “Optoacoustic imaging using two-dimensional ultrasonic detection,” in Ref. 1, pp. 240–248.
13.
P.
Liu
, “
Image reconstruction from photoacoustic pressure signals
,” in Laser-Tissue Interaction VII, edited by S. L. Jacques [
Proc. SPIE
2681
,
285
296
(
1996
)].
14.
P.
Liu
, “
The P-transform and photoacoustic image reconstruction
,”
Phys. Med. Biol.
43
,
667
674
(
1998
).
15.
A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
16.
P. H.
van Cittert
, “
Zum einfluβ der spaltbreite auf die intensitätsverteilung in spektrallinien
” (Influence of slit width on the intensity distribution in spectral lines),
Z. Phys.
69
,
298
308
(
1931
).
17.
P. A.
Jansson
, “
Method for determining the response function of a high-resolution infrared spectrometer
,”
J. Opt. Soc. Am.
60
,
184
191
(
1970
).
18.
D. A.
Agard
, “
Optical sectioning microscopy: Cellular architecture in three dimensions
,”
Annu. Rev. Biophys. Bioeng.
13
,
191
219
(
1984
).
19.
V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993).
20.
G. J.
Diebold
and
T.
Sun
, “
Properties of photoacoustic waves in one, two, and three dimensions
,”
Acustica
80
,
339
351
(
1994
).
21.
G.
Paltauf
,
H.
Schmidt-Kloiber
, and
M.
Frenz
, “
Photoacoustic waves excited in liquids by fiber-transmitted laser pulses
,”
J. Acoust. Soc. Am.
104
,
890
897
(
1998
).
22.
C. G. A.
Hoelen
and
F. F. M.
de Mul
, “
A new approach to photoacoustic signal generation
,”
J. Acoust. Soc. Am.
106
,
695
706
(
1999
).
23.
G.
Paltauf
and
H.
Schmidt-Kloiber
, “
Measurement of laser-induced acoustic waves with a calibrated optical transducer
,”
J. Appl. Phys.
82
,
1525
1531
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.