Cavitation appears to contribute to tissue injury in lithotripsy. Reports have shown that increasing pulse repetition frequency [(PRF) 0.5–100 Hz] increases tissue damage and increasing static pressure (1–3 bar) reduces cell damage without decreasing stone comminution. Our hypothesis is that overpressure or slow PRF causes unstabilized bubbles produced by one shock pulse to dissolve before they nucleate cavitation by subsequent shock pulses. The effects of PRF and overpressure on bubble dynamics and lifetimes were studied experimentally with passive cavitation detection, high-speed photography, and B-mode ultrasound and theoretically. Overpressure significantly reduced calculated (100–2 s) and measured (55–0.5 s) bubble lifetimes. At 1.5 bar static pressure, a dense bubble cluster was measured with clinically high PRF (2–3 Hz) and a sparse cluster with clinically low PRF (0.5–1 Hz), indicating bubble lifetimes of 0.5–1 s, consistent with calculations. In contrast to cavitation in water, high-speed photography showed that overpressure did not suppress cavitation of bubbles stabilized on a cracked surface. These results suggest that a judicious use of overpressure and PRF in lithotripsy could reduce cavitation damage of tissue while maintaining cavitation comminution of stones.

1.
C.
Renner
and
J.
Rassweiler
, “
Treatment of renal stones by extracorporeal shock wave lithotripsy
,”
Nephron
81
,
71
81
(
1999
).
2.
A. P.
Evan
,
L. R.
Willis
,
J. E.
Lingeman
, and
J. A.
McAteer
, “
Renal trauma and the risk of long-term complications in shock wave lithotripsy
,”
Nephron
78
,
1
8
(
1998
).
3.
W.
Sass
,
M.
Braunlich
,
H.
Dreyer
,
E.
Matura
,
W.
Folberth
,
H.
Priesmeyer
, and
J.
Seifert
, “
The mechanisms of stone disintegration by shock waves
,”
Ultrasound Med. Biol.
17
,
239
243
(
1991
).
4.
N. G.
Holmer
,
L. O.
Almquist
,
T. G.
Hertz
,
A.
Holm
,
E.
Lindstedt
,
H. W.
Persson
, and
C. H.
Hertz
, “
On the mechanism of kidney stone disintegration by acoustic shock waves
,”
Ultrasound Med. Biol.
17
,
479
489
(
1991
).
5.
N.
Vakil
,
S. M.
Gracewski
, and
E. C.
Everbach
, “
Relationship of model stone properties to fragmentation mechanisms during lithotripsy
,”
J. Litho. Stone Dis.
3
,
304
310
(
1991
).
6.
M.
Kuwahara
,
N.
Ioritani
,
K.
Kamke
,
S.
Shirai
,
K.
Taguchi
,
T.
Saitoh
,
S.
Orikasa
,
K.
Takayama
,
S.
Aida
, and
N.
Iwama
, “
Hyperechoic region induced by focused shock waves in vitro and in vivo: Possibility of acoustic cavitation bubbles
,”
J. Litho. Stone Dis.
1
,
218
228
(
1989
).
7.
A. J.
Coleman
,
M. J.
Choi
, and
J. E.
Saunders
, “
Detection of acoustic emission from cavitation in tissue during extracorporeal lithotripsy
,”
Ultrasound Med. Biol.
22
,
1079
1087
(
1996
).
8.
D.
Dalecki
,
C. H.
Raeman
,
S. Z.
Child
,
D. P.
Penney
,
R.
Mayer
, and
E. L.
Carstensen
, “
The influence of contrast agents on hemorrhage produced by lithotripter fields
,”
Ultrasound Med. Biol.
23
,
1435
1439
(
1997
).
9.
P.
Zhong
,
Y.
Zhou
, and
S.
Zhu
, “
Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL
,”
Ultrasound Med. Biol.
27
,
119
134
(
2001
).
10.
A. P. Evan, L. R. Willis, B. A. Connors, Y. Shao, J. E. Lingeman, J. C. J. Williams, J. A. McAteer, N. S. Fineberg, M. R. Bailey, and L. A. Crum, “Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in SWL,” J. Urol. (in press).
11.
M. R.
Bailey
,
D. T.
Blackstock
,
R. O.
Cleveland
, and
L. A.
Crum
, “
Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields
,”
J. Acoust. Soc. Am.
106
,
1149
1160
(
1999
).
12.
M. R. Bailey, “Control of acoustic cavitation with application to lithotripsy,” (Technical Report No. ARL-TR-97-1, Applied Research Laboratories, The University of Texas at Austin, Austin, TX, 1997, pp. 1–210.
13.
D. L.
Sokolov
,
M. R.
Bailey
, and
L. A.
Crum
, “
Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field
,”
J. Acoust. Soc. Am.
110
,
1685
1695
(
2001
).
14.
D. L. Sokolov, M. R. Bailey, F. Pulvermakher, and L. A. Crum, “Increased damage to stones without increased damage to cells with a dual-reflector lithotripter,” in Proceedings of the IEEE International Ultasonics Symposium, San Juan, Puerto Rico, 2000, Vol. 2, pp. 1437–1440.
15.
X. F.
Xi
and
P.
Zhong
, “
Improvement of stone fragmentation during shock wave lithotripsy using a combined EH/PEAA shock wave generator—in vitro experiments
,”
Ultrasound Med. Biol.
26
,
457
467
(
2000
).
16.
P.
Zhong
and
Y.
Zhou
, “
Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: Methodology and in vitro experiments
,”
J. Acoust. Soc. Am.
110
,
3283
3291
(
2001
).
17.
M.
Delius
, “
Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones
,”
Ultrasound Med. Biol.
23
,
611
617
(
1997
).
18.
P.
Huber
,
K.
Jochle
, and
J.
Debus
, “
Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter
,”
Phys. Med. Biol.
43
(
10
),
3113
3128
(
1998
).
19.
R. F. Paterson, D. A. Lifshitz, J. E. Lingeman, J. C. Williams, D. L. Rietjens, A. P. Evan, B. A. Connors, M. R. Bailey, L. A. Crum, R. O. Cleveland, Y. A. Pishchalnikova, I. V. Pishchalnikova, and J. A. McAteer, “Slowing the pulse repetition frequency in shock wave lithotripsy (SWL) improves stone fragmentation in vivo,” in Proceedings of the 17th International Congress on Acoustics, Rome, Italy, 2001, pp. 200–201.
20.
M.
Delius
,
W.
Mueller
,
A.
Goetz
,
H.-G.
Liebich
, and
W.
Brendel
, “
Biological effects of shock waves: Kidney hemorrhage in dogs at a fast shock wave administration rate of fifteen hertz
,”
J. Litho. Stone Dis.
2
,
103
110
(
1990
).
21.
R. E.
Apfel
, “
The role of impurities in cavitation-threshold determination
,”
J. Acoust. Soc. Am.
48
,
1179
1186
(
1970
).
22.
R. O. Cleveland, M. R. Bailey, L. A. Crum, M. A. Stonehill, J. C. Williams, Jr., and J. A. McAteer, “Effect of overpressure on dissolution and cavitation of bubbles stabilized on a metal surface,” in Proceedings of the 16th International Congress on Acoustics, Seattle, Washington, 1998, Vol. 3, pp. 2499–2500.
23.
M. R. Bailey, R. O. Cleveland, O. A. Sapozhnikov, J. A. McAteer, J. C. Williams, Jr., and L. A. Crum, “Effect of increased ambient pressure on lithotripsy-induced cavitation in bulk fluid and at solid surfaces,” in Collected Papers from the Joint Meeting ‘Berlin 99:’ 137th Meeting of the Acoustical Society of America; 2nd convention of the European Acoustics Association; 25th German Acoustics DAGA conference, edited by M. Moser and J. Tichy (Deutsche Gesellschaft fur Akustik (DEGA), Berlin, 1999), pp. 1–4 (CDROM only—no true page numbers).
24.
C. C.
Church
, “
A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter
,”
J. Acoust. Soc. Am.
86
,
215
227
(
1989
).
25.
F. R. Gilmore, “The growth or collapse of a spherical bubble in a viscous compressible liquid,” California Institute of Technology Report No. 26-4, 1952, pp. 1–40.
26.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid-gas solutions
,”
J. Chem. Phys.
18
,
1505
1509
(
1950
).
27.
A. J.
Coleman
and
J. E.
Saunders
, “
A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy
,”
Ultrasonics
31
,
75
89
(
1993
).
28.
S.
Zhu
and
P.
Zhong
, “
Shock wave—inertial microbubble interaction: A theoretical study based on the Gilmore formulation for bubble dynamics
,”
J. Acoust. Soc. Am.
106
,
3024
3032
(
1999
).
29.
F.
Chavrier
,
J. Y.
Chapelon
,
A.
Gelet
, and
D.
Cathignol
, “
Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles
,”
J. Acoust. Soc. Am.
108
,
432
440
(
2000
).
30.
A.
Eller
and
H. G.
Flynn
, “
Rectified diffusion during nonlinear pulsations of cavitation bubbles
,”
J. Acoust. Soc. Am.
37
,
493
503
(
1965
).
31.
W. Press, S. A. Teukolsky, W. T. Vetterling, and B. R. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge University Press, Cambridge, 1992), pp. 704–716.
32.
R. O.
Cleveland
,
M. R.
Bailey
,
N.
Fineberg
,
B.
Hartenbaum
,
M.
Lokhandwalla
,
J. A.
McAteer
, and
B.
Sturtevant
, “
Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3
,”
Rev. Sci. Instrum.
71
,
2514
2525
(
2000
).
33.
M. R.
Bailey
,
L. N.
Couret
,
O. A.
Sapozhnikov
,
V. A.
Khokhlova
,
G.
ter Haar
,
S.
Vaezy
,
X.
Shi
,
R.
Martin
, and
L. A.
Crum
, “
Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro
,”
Ultrasound Med. Biol.
27
,
696
708
(
2000
).
34.
M. A.
Stonehill
,
J. C.
Williams
, Jr.
,
M. R.
Bailey
,
D.
Lounsbery
,
R. O.
Cleveland
,
L. A.
Crum
,
A. P.
Evan
, and
J. A.
McAteer
, “
An acoustically matched high pressure chamber for control of cavitation in shock wave lithotripsy: Mechanisms of shock wave damage in vitro
,”
Methods Cell Sci.
19
,
303
310
(
1998
).
35.
R. O.
Cleveland
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
L. A.
Crum
, “
A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro
,”
J. Acoust. Soc. Am.
107
,
1745
1758
(
2000
).
36.
A. J.
Coleman
,
M. J.
Choi
,
J. E.
Saunders
, and
T. G.
Leighton
, “
Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter
,”
Ultrasound Med. Biol.
18
,
267
281
(
1992
).
37.
K.
Jochle
,
J.
Debus
,
W. J.
Lorenz
, and
P.
Huber
, “
A new method of quantitative cavitation assessment in the field of a lithotripter
,”
Ultrasound Med. Biol.
22
,
329
338
(
1996
).
38.
M.
Delius
, and
S.
Gambihler
, “
Sonographic imaging of extracorporeal shock wave effects in the liver and gallbladder of dogs
,”
Digestion
52
,
55
60
(
1992
).
39.
R. K.
Zeman
,
W. J.
Davros
,
B. S.
Garra
,
J. A.
Goldberg
,
S. C.
Horii
,
P. M.
Silverman
,
E. L.
Cattau
,
W. S.
Hayes
, and
C. J.
Cooper
, “
Cavitation effects during lithotripsy. II. Clinical observations
,”
Radiology
177
,
163
166
(
1990
).
40.
A. A.
Atchley
and
A.
Prosperetti
, “
The crevice model of bubble nucleation
,”
J. Acoust. Soc. Am.
86
,
1065
1084
(
1989
).
41.
L. A.
Crum
, “
Nucleation and stabilization of microbubbles in liquids
,”
Appl. Sci. Res.
38
,
101
115
(
1982
).
42.
J. A. McAteer, M. A. Stonehill, K. Colmenares, J. C. Williams, A. P. Evan, R. O. Cleveland, M. R. Bailey, and L. A. Crum, “SWL cavitation damage in vitro: Pressurization unmasks a differential response of foil targets and isolated cells,” Proceedings of the 16th International Congress on Acoustics and 135th Meeting of the Acoustical Society of America 1998, Vol. 3, pp. 2497–2498.
43.
M. R. Bailey, L. A. Crum, N. Miller, O. A. Sapozhnikov, Y. A. Pishchalnikov, R. O. Cleveland, J. A. McAteer, P. Blomgren, B. A. Connors, and A. P. Evan, “Localized cavitation detection in lithotripsy in vivo,” in Proceedings of the 17th International Congress on Acoustics, Rome, Italy, 2001, pp. 178–179.
This content is only available via PDF.
You do not currently have access to this content.