A low-dimensional, self-oscillation model of the vocal folds is used to capture three primary modes of vibration, a shear mode and two compressional modes. The shear mode is implemented with either two vertical masses or a rotating plate, and the compressional modes are implemented with an additional bar mass between the vertically stacked masses and the lateral boundary. The combination of these elements allows for the anatomically important body-cover differentiation of vocal fold tissues. It also allows for reconciliation of lumped-element mechanics with continuum mechanics, but in this reconciliation the oscillation region is restricted to a nearly rectangular glottis (as in all low-dimensional models) and a small effective thickness of vibration (<3 mm). The model is controlled by normalized activation levels of the cricothyroid (CT), thyroarytenoid (TA), lateral cricoarytenoid (LCA), and posterior cricoarytenoid (PCA) muscles, and lung pressure. An empirically derived set of rules converts these muscle activities into physical quantities such as vocal fold strain, adduction, glottal convergence, mass, thickness, depth, and stiffness. Results show that oscillation regions in muscle activation control spaces are similar to those measured by other investigations on human subjects.

1.
Alipour-Haghighi, F., and Titze, I. R. (1983). “Simulation of particle trajectories of vocal fold tissue during phonation,” in Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control, edited by I. Titze and R. Scherer, Denver Center for the Performing Arts, pp. 183–190.
2.
Alipour-Haghighi
,
F.
, and
Titze
,
I. R.
(
1991
). “
Elastic models of vocal fold tissues
,”
J. Acoust. Soc. Am.
90
,
1326
1331
.
3.
Alipour-Haghighi, F., and Titze, I. R. (1996). “Combined simulation of two-dimensional air and vocal fold vibration,” in Vocal Fold Physiology: Controlling Complexity and Chaos, edited by P. Davis and N. Fletcher (Singular, San Diego), pp. 17–29.
4.
Alipour-Haghighi
,
F.
,
Titze
,
I. R.
, and
Perlman
,
A. L.
(
1989
). “
Tetanic contraction in vocal fold muscle
,”
J. Speech Hear. Res.
32
,
226
231
.
5.
Baer, T. (1975). “Investigation of phonation using excised larynges,” doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.
6.
Berry
,
D. A.
, and
Titze
,
I. R.
(
1996
). “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
105
,
3345
3354
.
7.
Berry
,
D. A.
,
Moon
,
J. B.
, and
Kuehn
,
D. P.
(
1999
). “
A finite element model of the soft palate
,”
Cleft Palate Craniofac J.
36
(
3
),
217
223
.
8.
Chan
,
R.
, and
Titze
,
I. R.
(
1997
). “
Dynamic shear modulus of vocal fold tissues and phonosurgical biomaterials
,”
J. Acoust. Soc. Am.
101
,
3179
(A).
9.
Chan
,
R.
, and
Titze
,
I. R.
(
1999
). “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
106
,
2008
2012
.
10.
Chan
,
R.
,
Titze
,
I. R.
, and
Titze
,
M.
(
1997
). “
Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
101
,
3722
3727
.
11.
Flanagan
,
J. L.
, and
Landgraf
,
L. L.
(
1968
). “
Self-oscillating source for vocal-tract synthesis
,”
IEEE Trans. Audio Electroacoust.
AU-16
(
1
),
57
64
.
12.
Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissue, 2nd ed. (Springer Verlag, New York).
13.
Hirano, M. (1975). “Phonosurgery: Basic and clinical investigations,” in 78th annual convention of the Oto-Rhino-Laryngological Society of Japan, 78th annual convention of the Oto-Rhino-Laryngological Society of Japan.
14.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
(
6
),
1233
1268
.
15.
Kaneko, T., Uchida, K., Suzuki, H., Komatsu, K., Kanesaka, T., Kobayashi, N., and Naito, J. (1981). “Mechanical properties of the vocal fold: Measurements in vivo,” in Vocal Fold Physiology, edited by K. N. Stevens and M. Hirano (Tokyo U.P., Tokyo), pp. 365–376.
16.
Liljencrants, J. (1991). “A translating and rotating mass model of the vocal folds,” STL Quarterly Progress and Status Report, 1, Speech Transmission Laboratory (Royal Institute of Technology (KTH), Stockholm, Sweden), pp. 1–18.
17.
Min
,
Y.
,
Titze
,
I. R.
, and
Alipour-Haghighi
,
F.
(
1995
). “
Stress-strain response of the human vocal ligament
,”
Ann. Otol. Rhinol. Laryngol.
104
(
7
),
563
569
.
18.
Nishizawa, N., Sawashima, M., and Yonemoto, K. (1988). “Vocal fold length in vocal pitch change,” in Vocal Physiology: Voice Production, Mechanisms and Functions, edited by O. Fujimura (Raven, New York), pp. 75–82.
19.
Pelorson
,
X.
,
Hirschberg
,
A.
,
van Hassel
,
R.
,
Wijnands
,
A.
, and
Auregan
,
Y.
(
1994
). “
Theoretical and experimental study of quasi-steady separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
20.
Scherer, R. (1995). “Laryngeal function during phonation,” in Diagnosis and Treatment of Voice Disorders, edited by J. Rubin, R. Sataloff, G. Korovin, and W. Gould (IGAKU-SHOIN, New York).
21.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
22.
Titze
,
I. R.
(
2002
). “
Regulating glottal air in phonation: application of the maximum power transfer theorem
,”
J. Acoust. Soc. Am.
111
,
67
76
.
23.
Titze
,
I. R.
, and
Strong
,
W.
(
1975
). “
Normal modes in vocal cord tissues
,”
J. Acoust. Soc. Am.
57
,
736
744
.
24.
Titze
,
I. R.
, and
Talkin
,
D. T.
(
1979
). “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
,
60
74
.
25.
Titze
,
I. R.
,
Jiang
,
J.
, and
Druker
,
D.
(
1988
). “
Preliminaries to the body-cover theory of pitch control
,”
J. Voice
1
(
4
),
314
319
.
26.
Titze
,
I. R.
,
Luschei
,
E. S.
, and
Hirano
,
M.
(
1989
). “
The role of the thyroarytenoid muscle in regulation of fundamental frequency
,”
J. Voice
3
(
3
),
213
224
.
27.
Titze, I. R. (1994). Principles of Voice Production (Prentice–Hall, Englewood Cliffs, NJ).
28.
Titze
,
I. R.
,
Jiang
,
J. J.
, and
Lin
,
E.
(
1997
). “
The dynamics of length change in canine vocal folds
,”
J. Voice
11
(
3
),
267
276
.
29.
Titze
,
I. R.
,
Jiang
,
J. J.
, and
Hsiao
,
T. Y.
(
1993
). “
Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration
,”
Ann. Otol. Rhinol. Laryngol.
102
(
1
),
58
63
.
30.
Wilhelms-Tricarico
,
R.
(
1995
). “
Physiological modeling of speech production: Methods for modeling soft-tissue articulators
,”
J. Acoust. Soc. Am.
97
,
3085
3098
.
31.
Yumoto
,
E.
,
Katota
,
Y.
, and
Kurokawa
,
H.
(
1993
). “
Tracheal view of vocal fold vibration in excised canine larynxes
,”
Arch. Otolaryngol. Head Neck Surg.
119
(
1
),
73
78
.
This content is only available via PDF.
You do not currently have access to this content.