Acoustic models that produce speech signals with information content similar to that provided to cochlear implant users provide a mechanism by which to investigate the effect of various implant-specific processing or hardware parameters independent of other complicating factors. This study compares speech recognition of normal-hearing subjects listening through normal and impaired acoustic models of cochlear implant speech processors. The channel interactions that were simulated to impair the model were based on psychophysical data measured from cochlear implant subjects and include pitch reversals, indiscriminable electrodes, and forward masking effects. In general, spectral interactions degraded speech recognition more than temporal interactions. These effects were frequency dependent with spectral interactions that affect lower-frequency information causing the greatest decrease in speech recognition, and interactions that affect higher-frequency information having the least impact. The results of this study indicate that channel interactions, quantified psychophysically, affect speech recognition to different degrees. Investigation of the effects that channel interactions have on speech recognition may guide future research whose goal is compensating for psychophysically measured channel interactions in cochlear implant subjects.

1.
Blamey
,
P. J.
,
Dowell
,
R. C.
,
Tong
,
Y. C.
, and
Clark
,
G. M.
(
1984
). “
An acoustic model of a multiple-channel cochlear implant
,”
J. Acoust. Soc. Am.
76
,
97
103
.
2.
Busby
,
P. A.
,
Whitford
,
L. A.
,
Blamey
,
P. J.
,
Richardson
,
L. M.
, and
Clark
,
G. M.
(
1994
). “
Pitch perception for different modes of stimulation using the Cochlear multiple-electrode prosthesis
,”
J. Acoust. Soc. Am.
95
,
2658
2669
.
3.
Chatterjee
,
M.
(
1999
). “
Temporal mechanisms underlying recovery from forward masking in multielectrode-implant listeners
,”
J. Acoust. Soc. Am.
105
,
1853
1863
.
4.
Chatterjee
,
M.
, and
Shannon
,
R. V.
(
1998
). “
Forward masking excitation patterns in multielectrode electrical stimulation
,”
J. Acoust. Soc. Am.
103
,
2565
2572
.
5.
Cochlear Corporation/The University of Iowa Revised Cochlear Implant Test Battery (1995). Englewood, CO.
6.
Collins
,
L. M.
, and
Throckmorton
,
C. S.
(
2000
). “
Investigating perceptual features of electrode stimulation via a multidimensional scaling paradigm
,”
J. Acoust. Soc. Am.
108
,
2353
2365
.
7.
Collins
,
L. M.
,
Zwolan
,
T. A.
, and
Wakefield
,
G. H.
(
1997
). “
Comparison of electrode discriminability, pitch ranking, and pitch scaling data in postlingually deafened adult cochlear impant subjects
,”
J. Acoust. Soc. Am.
101
,
440
455
.
8.
Davis, H., and Silverman, S. R. (1978). Hearing and Deafness (Holt, Rinehart, and Winston, New York).
9.
Dorman
,
M. F.
, and
Loizou
,
P. C.
(
1997
). “
Speech intelligibility as a function of the number of channels of stimulation for normal-hearing listeners and patients with cochlear implants
,”
Am. J. Otol.
18
,
S113
S114
.
10.
Dorman
,
M. F.
,
Loizou
,
P. C.
, and
Rainey
,
D.
(
1997a
). “
Simulating the effect of cochlear-implant electrode insertion depth on speech understanding
,”
J. Acoust. Soc. Am.
102
,
2993
2996
.
11.
Dorman
,
M. F.
,
Loizou
,
P. C.
, and
Rainey
,
D.
(
1997b
). “
Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs
,”
J. Acoust. Soc. Am.
102
,
2403
2411
.
12.
Freeman
,
M. F.
, and
Tukey
,
J. W.
(
1950
). “
Transformations related to the angular and the square root
,”
Ann. Math. Stat.
21
,
607
611
.
13.
Fu
,
Q.-J.
, and
Shannon
,
R. V.
(
1998
). “
Effects of amplitude nonlinearity on phoneme recognition by cochlear implant users and normal-hearing listeners
,”
J. Acoust. Soc. Am.
104
,
2570
2577
.
14.
Fu
,
Q.-J.
, and
Shannon
,
R. V.
(
1999
). “
Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing
,”
J. Acoust. Soc. Am.
105
,
1889
1900
.
15.
Fu
,
Q.-J.
,
Shannon
,
R. V.
, and
Wang
,
X.
(
1998
). “
Effects of noise and spectral resolution on vowel and consonant recognition: Acoustic and electric hearing
,”
J. Acoust. Soc. Am.
104
,
3586
3596
.
16.
Geier
,
L.
,
Fisher
,
L.
,
Barker
,
M.
, and
Opie
,
J.
(
1999
). “
The effect of long-term deafness on speech recognition in postlingually deafened adult Clarion cochlear implant users
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
177
,
80
83
.
17.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
18.
Hartmann
,
R.
,
Topp
,
G.
, and
Klinke
,
R.
(
1984
). “
Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea
,”
Hear. Res.
13
,
47
62
.
19.
Henry, B. A., McKay, C. M., McDermott, H. J., and Clark, G. M. (1997). “The relationship between speech information perceived by cochlear implantees in different spectral regions and electrode discrimination,” 1997 Conference on Implantable Auditory Prostheses, Asilomar Conference Center, Pacific Grove, California.
20.
Henry
,
B. A.
,
McKay
,
C. M.
,
McDermott
,
H. J.
, and
Clark
,
G. M.
(
2000
). “
The relationship between speech perception and electrode discrimination in cochlear implantees
,”
J. Acoust. Soc. Am.
108
,
1269
1280
.
21.
Kessler
,
D. K.
(
1999
). “
The Clarion multistrategy cochlear implant
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
177
,
8
16
.
22.
Kiang
,
N. Y.-S.
, and
Moxon
,
E. C.
(
1972
). “
Physiological considerations in artificial stimulation of the inner ear
,”
Ann. Otol. Rhinol. Laryngol.
81
,
714
730
.
23.
Lim
,
H. H.
,
Tong
,
Y. C.
, and
Clark
,
G. M.
(
1989
). “
Forward masking patterns produced by intracochlear electrical stimulation of one and two electrode pairs in the human cochlea
,”
J. Acoust. Soc. Am.
86
,
971
980
.
24.
Rosen
,
S.
,
Faulkner
,
A.
, and
Wilkinson
,
L.
(
1999
). “
Adaptation by normal listeners to upward spectral shifts of speech: Implications for cochlear implants
,”
J. Acoust. Soc. Am.
106
,
3629
3636
.
25.
Rubinstein
,
J. T.
,
Parkinson
,
W. S.
,
Tyler
,
R. S.
, and
Gantz
,
B. J.
(
1999
). “
Residual speech recognition and cochlear implant performance effects of implantation criteria
,”
Am. J. Otol.
20
,
445
452
.
26.
Shannon
,
R. V.
(
1983a
). “
Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics
,”
Hear. Res.
11
,
157
189
.
27.
Shannon
,
R. V.
(
1983b
). “
Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction
,”
Hear. Res.
12
,
1
16
.
28.
Shannon
,
R. V.
,
Zeng
,
F.-G.
, and
Wygonski
,
J.
(
1998
). “
Speech recognition with altered spectral distribution of envelope cues
,”
J. Acoust. Soc. Am.
104
,
2467
2476
.
29.
Shipp
,
D. B.
, and
Nedzelski
,
J. M.
(
1995
). “
Prognostic indicators of speech recognition performance in adult cochlear implant users: A prospective analysis
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
166
,
194
196
.
30.
TDT (1997). PSYCHOSIG. Gainesville, FL, Tucker-Davis Technologies, Inc.
31.
Thornton
,
A. R.
, and
Raffin
,
M. J. M.
(
1978
). “
Speech discrimination scores modeled as a binomial variable
,”
J. Speech Hear. Res.
21
,
507
518
.
32.
Throckmorton
,
C. S.
, and
Collins
,
L. M.
(
1999
). “
Investigation of the effects of temporal and spatial interactions on speech-recognition skills in cochlear-implant subjects
,”
J. Acoust. Soc. Am.
105
,
861
873
.
33.
Tillman, T. W., and Carhart, T. (1966). “An expanded test for speech discrimination utilizing CNC monosyllabic words: Northwestern University Auditory Test No. 6,” USAF School of Aerospace Medicine (Brooks Air Force Base, Texas).
34.
Tong
,
Y. C.
,
Harrison
,
J. M.
,
Huigen
,
J.
, and
Clark
,
G. M.
(
1990
). “
Comparison of two speech processing schemes using normal-hearing subjects
,”
Acta Oto-Laryngol., Suppl.
469
,
135
139
.
35.
Townshend
,
B.
,
Cotter
,
N.
,
Van Compernolle
,
D.
, and
White
,
R. L.
(
1987
). “
Pitch perception by cochlear implant subjects
,”
J. Acoust. Soc. Am.
82
,
106
115
.
36.
Tyler, R. S., Preece, J. P., and Tye-Murray, N. (1986). The Iowa Phoneme and Sentence Tests, Iowa City, The University of Iowa, Department of Otolaryngology.
37.
van Dijk
,
J. E.
,
van Olphen
,
A. F.
,
Langereis
,
M. C.
,
Mens
,
L. H. M.
,
Brokx
,
J. P. L.
, and
Smoorenburg
,
G. F.
(
1999
). “
Predictors of cochlear implant performance
,”
Audiology
38
,
109
116
.
38.
Whitford
,
L. A.
,
Seligman
,
P. M.
,
Everingham
,
C. E.
,
Antognelli
,
T.
,
Skok
,
M. C.
,
Hollow
,
R. D.
,
Plant
,
K. L.
,
Gerin
,
E. S.
,
Staller
,
S. J.
,
McDermott
,
H. J.
,
Gibson
,
W. R.
, and
Clark
,
G. M.
(
1995
). “
Evaluation of the Nucleus Spectra 22 Processor and new speech processing strategy (SPEAK) in postlingually deafened adults
,”
Acta Oto-Laryngol.
115
,
629
637
.
39.
Wilson
,
B. S.
,
Lawson
,
D. T.
,
Finley
,
C. C.
, and
Wolford
,
R. D.
(
1991
). “
Coding strategies for multichannel cochlear prostheses
,”
Am. J. Otol. Suppl.
12
,
56
61
.
40.
Zwolan
,
T. A.
,
Collins
,
L. M.
, and
Wakefield
,
G. H.
(
1997
). “
Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects
,”
J. Acoust. Soc. Am.
102
,
3673
3685
.
This content is only available via PDF.
You do not currently have access to this content.