Animal vocalizations range from almost periodic vocal-fold vibration to completely atonal turbulent noise. Between these two extremes, a variety of nonlinear dynamics such as limit cycles, subharmonics, biphonation, and chaotic episodes have been recently observed. These observations imply possible functional roles of nonlinear dynamics in animal acoustic communication. Nonlinear dynamics may also provide insight into the degree to which detailed features of vocalizations are under close neural control, as opposed to more directly reflecting biomechanical properties of the vibrating vocal folds themselves. So far, nonlinear dynamical structures of animal voices have been mainly studied with spectrograms. In this study, the deterministic versus stochastic (DVS) prediction technique was used to quantify the amount of nonlinearity in three animal vocalizations: macaque screams, piglet screams, and dog barks. Results showed that in vocalizations with pronounced harmonic components (adult macaque screams, certain piglet screams, and dog barks), deterministic nonlinear prediction was clearly more powerful than stochastic linear prediction. The difference, termed low-dimensional nonlinearity measure (LNM), indicates the presence of a low-dimensional attractor. In highly irregular signals such as juvenile macaque screams, piglet screams, and some dog barks, the detectable amount of nonlinearity was comparatively small. Analyzing 120 samples of dog barks, it was further shown that the harmonic-to-noise ratio (HNR) was positively correlated with LNM. It is concluded that nonlinear analysis is primarily useful in animal vocalizations with strong harmonic components (including subharmonics and biphonation) or low-dimensional chaos.

1.
Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data (Springer, New York).
2.
Awan
,
S. N.
, and
Frenkel
,
M. L.
(
1994
). “
Improvements in estimating the harmonic-to-noise-ratio of the voice
,”
J. Voice
8
,
255
262
.
3.
Behrman
,
A.
(
1999
). “
Global and local dimensions of vocal dynamics
,”
J. Acoust. Soc. Am.
105
,
432
443
.
4.
Behrman
,
A.
,
Agresti
,
C. J.
,
Blumstein
,
E.
, and
Lee
,
N.
(
1998
). “
Microphone and electroglottographic data from dysphonic patients: Type 1, 2, and 3 signals
,”
J. Voice
12
,
249
260
.
5.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Krischer
,
K.
(
1994
). “
Interpretations of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions
,”
J. Acoust. Soc. Am.
95
,
3595
3604
.
6.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Story
,
B. H.
(
1996
). “
Bifurcations in excised larynx experiments
,”
J. Voice
10
,
129
138
.
7.
Bradbury, J. W., and Vehrencamp, S. L. (1998). Principles of Animal Communication (Sinauer, Sunderland).
8.
Brown
,
C. H.
, and
Cannito
,
M. P.
(
1995
). “
Modes of vocal variation in Syke’s monkey (Cercopithecus albogularis) squeals
,”
J. Comp. Psych.
109
,
398
415
.
9.
Brown, C. H., Alipour, F., Berry, D. A., and Montequin, D. (2002). “Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis),” J. Acoust. Soc. Am. (submitted).
10.
Casdagli
,
M.
(
1992
). “
Chaos and deterministic versus stochastic nonlinear modeling
,”
J. R. Stat. Soc. Ser. B. Methodol.
54
,
303
328
.
11.
Davis, P., and Fletcher, N. H., editors (1996). Vocal Fold Physiology: Controlling Complexity and Chaos (Singular, San Diego).
12.
Farmer
,
J. D.
, and
Sidorowich
,
J. J.
(
1987
). “
Predicting chaotic time series
,”
Phys. Rev. Lett.
59
,
845
848
.
13.
Feddersen-Petersen
,
D. U.
(
2000
). “
Vocalization of European wolves (Canis lupus lupus L.) and various dog breeds (Canis lupus f. fam.)
,”
Arch. Tierz. Dummerstorf.
43
,
387
397
.
14.
Fee
,
M. S.
,
Shraiman
,
B.
,
Pesaran
,
B.
, and
Mitra
,
P. P.
(
1998
). “
The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird
,”
Nature (London)
395
,
67
71
.
15.
Fischer
,
J.
,
Hammerschmidt
,
K.
, and
Todt
,
D.
(
1995
). “
Factors affecting acoustic variation in Barbary macaques (Macaca sylvanus) disturbance calls
,”
Ethology
101
,
51
66
.
16.
Fitch, T., Herzel, H., Neubauer, J., and Hauser, M. (2002). “Calls out of chaos: The adaptive significance of nonlinear phenomena in primate vocal production,” Anim. Behav. (in press).
17.
Fletcher
,
N. H.
(
2000
). “
A class of chaotic bird calls?
J. Acoust. Soc. Am.
108
,
821
826
.
18.
Gibiat
,
V.
, and
Castellengo
,
M.
(
2000
). “
Period doubling occurrences in wind instruments musical performance
,”
Acust. Acta Acust.
86
,
746
754
.
19.
Gouzoules
,
H.
, and
Gouzoules
,
S.
(
2000
). “
Agonistic screams differ among four species of macaques: The significance of motivation-structural rules
,”
Anim. Behav.
59
,
501
512
.
20.
Green, S. (1975). “Variation of vocal pattern with social situation in the Japanese monkey (Macaca fuscata): A field study,” in Primate Behavior (Academic, New York), pp. 1–102.
21.
Grimm
,
R. J.
(
1967
). “
Catalogue of sounds of the pigtailed macaque (Macaca nemestrina)
,”
J. Zool. Lond.
152
,
361
373
.
22.
Hall, K. R. L., and DeVore, I. (1965). “Baboon social behavior,” in Primate Behavior: Field Studies of Monkeys and Apes, edited by I. DeVore (Holt, Rinehart & Winston, New York), pp. 53–110.
23.
Hauser
,
M. D.
(
1993
). “
The evolution of nonhuman primate vocalizations: Effects of phylogeny, body weight, and social context
,”
Am. Nat.
142
,
528
542
.
24.
Hauser, M. D. (1996). The Evolution of Communication (MIT Press, Cambridge).
25.
Herzel
,
H.
,
Berry
,
D.
,
Titze
,
I. R.
, and
Saleh
,
S.
(
1994
). “
Analysis of vocal disorders with methods from nonlinear dynamics
,”
J. Speech Hear. Res.
37
,
1008
1019
.
26.
Hohmann
,
G.
(
1989
). “
Vocal communication of wild bonnet macaques (Macaca radiata)
,”
Primates
30
,
325
345
.
27.
Jürgens, U. (1995). “Neuronal control of vocal production,” in Current Topics in Primate Vocal Communication, edited by E. Zimmermann, J. D. Newman, and U. Jürgens (Plenum, New York), pp. 199–206.
28.
Kantz, H., and Schreiber, T. (1997). Nonlinear Time Series Analysis (Cambridge U.P., Cambridge).
29.
Kubin, G. (1995). “Nonlinear processing of speech,” in Speech Coding and Synthesis, edited by W. B. Kleijin and K. K. Paliwal (Elsevier Science, Amsterdam), pp. 557–610.
30.
Kumar
,
A.
, and
Mullick
,
S. K.
(
1996
). “
Nonlinear dynamical analysis of speech
,”
J. Acoust. Soc. Am.
100
,
615
629
.
31.
Lauterborn
,
W.
, and
Parlitz
,
U.
(
1988
). “
Methods of chaos physics and their application to acoustics
,”
J. Acoust. Soc. Am.
84
,
1975
1993
.
32.
Markel, J. D., and Gray, A. H. (1976). Linear Prediction of Speech (Springer, Berlin).
33.
May
,
R. M.
(
1976
). “
Simple mathematical models with very complicated dynamics
,”
Nature (London)
261
,
459
467
.
34.
Mende
,
W.
,
Herzel
,
H.
, and
Wermke
,
K.
(
1990
). “
Bifurcations and chaos in newborn infant cries
,”
Phys. Lett. A
145
,
418
424
.
35.
Mergell
,
P.
,
Fitch
,
T.
, and
Herzel
,
H.
(
1999
). “
Modeling the role of nonhuman vocal membranes in phonation
,”
J. Acoust. Soc. Am.
105
,
2020
2028
.
36.
Michelsson, K. (1980). “Cry characteristics in sound spectrographic cry analysis,” in Infant Communication: Cry and Early Speech, edited by T. Murry and J. Murry (College-Hill, Houston), pp. 85–105.
37.
Narayanan
,
S. N.
, and
Alwan
,
A. A.
(
1995
). “
A nonlinear dynamical systems analysis of fricative consonants
,”
J. Acoust. Soc. Am.
97
,
2511
2524
.
38.
Owren, M. J., and Linker, C. D. (1995). “Some analysis methods that may be useful to acoustic primatologists,” in Current Topics in Primate Vocal Communication, edited by E. Zimmermann, J. D. Newman, and U. Jürgens (Plenum, New York), pp. 1–27.
39.
Paulsen, K. (1967). Das Prinzip der Stimmbildung in der Wirbeltierreihe und beim Menschen (Akademische, Frankfurt).
40.
Rapp
,
P. E.
(
1993
). “
Chaos in the neurosciences: Cautionary tales from the frontier
,”
Biologist
40
,
89
94
.
41.
Rapp
,
P. E.
,
Albano
,
A. M.
,
Schmah
,
T. I.
, and
Farwell
,
L. A.
(
1993
). “
Filtered noise can mimic low-dimensional chaotic attractors
,”
Phys. Rev. E
47
,
2289
2297
.
42.
Riede
,
T.
,
Wilden
,
I.
, and
Tembrock
,
G.
(
1997
). “
Subharmonics, biphonations, and frequency jumps: Common components of mammalian vocalization or indicators for disorders
,”
Z. Saugetierkunde
62
, Suppl. 2:
198
203
.
43.
Riede
,
T.
,
Herzel
,
H.
,
Mehwald
,
D.
,
Seidner
,
W.
,
Trumler
,
E.
,
Tembrock
,
G.
, and
Böhme
,
G.
(
2000
). “
Nonlinear phenomena and their anatomical basis in the natural howling of a female dog–wolf breed
,”
J. Acoust. Soc. Am.
108
,
1435
1442
.
44.
Riede
,
T.
,
Herzel
,
H.
,
Hammerschmidt
,
K.
,
Brunnberg
,
L.
, and
Tembrock
,
G.
(
2001
). “
The harmonic-to-noise-ratio applied to dog barks
,”
J. Acoust. Soc. Am.
110
,
2191
2197
.
45.
Rowell
,
T. E.
(
1967
). “
Agonistic noises of the rhesus monkey (Macaca mulatta)
,”
Symp. Zool. Soc. Lond.
8
,
91
96
.
46.
Ruelle
,
D.
(
1990
). “
Deterministic chaos: Science and fiction
,”
Proc. R. Soc. London, Ser. A
427
,
244
248
.
47.
Ruelle
,
D.
(
1994
). “
Where can one hope to profitably apply the ideas of chaos?
Phys. Today
7
,
24
30
.
48.
Ryan, M. J. (1988). “Constraints and patterns in the evolution of anuran acoustic communication,” in The Evolution of the Amphibian Auditory System, edited by B. Fritzsch, M. J. Ryan, W. Wilczynski, T. E. Hetherington, and W. Wlakowiak (Wiley, New York), pp. 637–677.
49.
Sauer
,
T.
,
York
,
J. A.
, and
Casdagli
,
M.
(
1991
). “
Embedology
,”
J. Stat. Phys.
65
,
579
616
.
50.
Schassburger, R. M. (1993). Vocal Communication in the Timber Wolf, Canis lupus, Linnaeus (Paul Parey Sci., Berlin).
51.
Schön
,
P. C.
,
Puppe
,
B.
,
Gromyko
,
T.
, and
Manteuffel
,
G.
(
1999
). “
Common features and individual differences in nurse grunting of domestic pigs (Sus scrofa): A multiparametric analysis
,”
Behaviour
136
,
49
66
.
52.
Schrader
,
L.
, and
Hammerschmidt
,
K.
(
1997
). “
Computer-aided analysis of acoustic parameters in animal vocalizations: A multiparametric approach
,”
Bioacoustics
7
,
247
265
.
53.
Schreiber
,
T.
, and
Schmitz
,
A.
(
1996
). “
Improved surrogate data for nonlinearity tests
,”
Phys. Rev. Lett.
77
,
635
638
.
54.
Smith
,
L. A.
(
1988
). “
Intrinsic limits of on dimension calculations
,”
Phys. Lett. A
133
,
283
288
.
55.
Steinecke
,
I.
, and
Herzel
,
H.
(
1995
). “
Bifurcations in an asymmetric vocal fold model
,”
J. Acoust. Soc. Am.
97
,
1571
1578
.
56.
Struhsaker, T. T. (1967). “Auditory communication Among vervet monkeys (Cercopithecus aethiops),” in Social Communication Among Primates, edited by S. A. Altmann (University of Chicago Press, Chicago), pp. 281–324.
57.
Takens, F. (1981). “Detecting strange attractors in turbulence,” in Lecture Notes in Math (Springer, Berlin, 1981), Vol. 898, pp. 366–381.
58.
Tembrock
,
G.
(
1976
). “
Canid vocalizations
,”
Behav. Processes
1
,
57
75
.
59.
Tembrock, G. (1996). Akustische Kommunikation bei Saeugetieren (Wissenschaftl. Buchgesell., Darmstadt).
60.
Theiler
,
J.
(
1986
). “
Spurious dimension from correlation algorithms applied to limited time-series data
,”
Phys. Rev. A
34
,
2427
2432
.
61.
Theiler
,
J.
,
Eubank
,
S.
,
Longtin
,
A.
,
Galdrikian
,
B.
, and
Farmer
,
J. D.
(
1992
). “
Testing for nonlinearity in time series: The method of surrogate data
,”
Physica D
58
,
77
94
.
62.
Theiler
,
J.
, and
Prichard
,
D.
(
1996
). “
Constrained-realization Monte-Carlo method for hypothesis testing
,”
Physica D
94
,
221
235
.
63.
Tigges
,
M.
,
Mergell
,
P.
,
Herzel
,
H.
,
Wittenberg
,
T.
, and
Eysholdt
,
U.
(
1997
). “
Observation and modeling glottal biphonation
,”
Acust. Acta Acust.
83
,
707
714
.
64.
Titze, I. R. (1994). Principles of Voice Production (Prentice-Hall, Englewood Cliffs, NJ).
65.
Titze, I. R., Baken, R. J., and Herzel, H. (1993). “Evidence of chaos in vocal fold vibration,” in Vocal Fold Physiology, edited by I. R. Titze (Singular, San Diego), pp. 143–188.
66.
Townshend, B. (1991). “Nonlinear prediction of speech,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (IEEE, New York, 1991), pp. 425–428.
67.
Wilden, I. (1997). “Phonetische variabillitaet in der lautgebung afrikanischer wildhunde (Lycaon pictus) und deren frühe ontogenes,” Ph.D. thesis, Humboldt-University, Berlin.
68.
Wilden
,
I.
,
Herzel
,
H.
,
Peters
,
G.
, and
Tembrock
,
G.
(
1998
). “
Subharmonics, biphonation, and deterministic chaos in mammal vocalization
,”
Bioacoustics
,
9
,
171
196
.
69.
Yumoto
,
E.
,
Gould
,
W. J.
, and
Baer
,
T.
(
1982
). “
Harmonic-to-noise-ratio as an index of the degree of hoarseness
,”
J. Acoust. Soc. Am.
71
,
1544
1550
.
This content is only available via PDF.
You do not currently have access to this content.