A theoretical and experimental study was undertaken to examine the feasibility of using audible-frequency vibro-acoustic waves for diagnosis of pneumothorax, a collapsed lung. The hypothesis was that the acoustic response of the chest to external excitation would change with this condition. In experimental canine studies, external acoustic energy was introduced into the trachea via an endotracheal tube. For the control (nonpneumothorax) state, it is hypothesized that sound waves primarily travel through the airways, couple to the lung parenchyma, and then are transmitted directly to the chest wall. In contradistinction, when a pneumothorax is present the intervening air presents an added barrier to efficient acoustic energy transfer. Theoretical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanisms of intensity loss when a pneumothorax is present, relative to a baseline case. These models predict significant decreases in acoustic transmission strength when a pneumothorax is present, in qualitative agreement with experimental measurements. Development of the models, their extension via finite element analysis, and comparisons with experimental canine studies are reviewed.

1.
M. H.
Bauman
,
C.
Strange
,
J. E.
Heffner
,
R.
Light
,
T. J.
Kirby
,
J.
Klein
,
J. D.
Luketich
,
E. A.
Panacek
, and
S. A.
Sahn
, “
Management of spontaneous pneumothorax: An American College of Chest Physicians Delphi Consensus Statement
,”
Chest
19
,
590
602
(
2001
).
2.
H.
Pasterkamp
,
S. S.
Kraman
, and
G. R.
Wodicka
, “
Respiratory sounds: Advances beyond the stethoscope
,”
Am. J. Respir. Crit. Care Med.
156
,
974
87
(
1997
).
3.
M.
Abella
,
J.
Formolo
, and
D. G.
Penney
, “
Comparison of the acoustic properties of six popular stethoscopes
,”
J. Acoust. Soc. Am.
91
,
2224
2228
(
1992
).
4.
T. J.
Royston
,
H. A.
Mansy
, and
R. H.
Sandler
, “
Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis
,”
J. Acoust. Soc. Am.
106
,
3678
86
(
1999
).
5.
J. J.
Fredberg
, and
J. A.
Moore
, “
Distributed response of complex branching duct networks
,”
J. Acoust. Soc. Am.
63
,
954
961
(
1978
).
6.
R. L.
Donnerberg
,
C. K.
Druzgalski
,
R. L.
Hamlin
,
G. L.
Davis
,
R. M.
Campbell
, and
D. A.
Rice
, “
Sound transfer function of congested canine lung
,”
Br. J. Dis. Chest
74
,
23
31
(
1980
).
7.
K.
Ishizaka
,
M.
Matsudaira
, and
T.
Kaneko
, “
Input acoustic-impedance measurement of the subglottal system
,”
J. Acoust. Soc. Am.
60
,
190
197
(
1976
).
8.
J. J.
Fredberg
, “
Spatial considerations in oscillation mechanics of the lung
,”
Fed. Proc.
39
,
2747
2754
(
1980
).
9.
A. C.
Jackson
,
C. A.
Giudanella
, and
H. L.
Dorkin
, “
Density dependence of respiratory system impedances between 5 and 320 Hz in humans
,”
J. Appl. Physiol.
67
,
2323
2330
(
1989
).
10.
H.
Hudde
and
H.
Slatky
, “
The acoustical input impedance of excised human lungs: Measurements and model matching
,”
J. Acoust. Soc. Am.
86
,
475
492
(
1989
).
11.
R. H.
Habib
,
B.
Suki
,
J. H.
Bates
, and
A. C.
Jackson
, “
Serial distribution of airway mechanical properties in dogs: Effects of histamine
,”
J. Appl. Physiol.
77
,
554
566
(
1994
).
12.
J. P.
Mansfield
and
G. R.
Wodicka
, “
Using acoustic reflectometry to determine breathing tube position and patency
,”
J. Sound Vib.
188
,
167
188
(
1995
).
13.
P.
Harper
,
S. S.
Kraman
,
H.
Pasterkamp
, and
G. R.
Wodicka
, “
An acoustic model of the respiratory tract
,”
IEEE Trans. Biomed. Eng.
48
,
543
550
(
2001
).
14.
J. P.
Butler
,
J. L.
Lehr
, and
J. M.
Drazen
, “
Longitudinal elastic wave propagation in pulmonary parenchyma
,”
J. Appl. Physiol.
62
,
1349
1355
(
1987
).
15.
G. R.
Wodicka
,
K. N.
Stevens
,
H. L.
Golub
,
E. G.
Cravalho
, and
D. C.
Shannon
, “
A model of acoustic transmission in the respiratory system
,”
IEEE Trans. Biomed. Eng.
36
,
925
934
(
1989
).
16.
I. V.
Vovk
,
V. T.
Grinchenko
, and
V. N.
Oleinik
, “
Modeling the acoustic properties of the chest and measuring breath sounds
,”
Acoust. Phys.
41
,
667
676
(
1995
).
17.
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 3rd ed. (Wiley, New York, 1982).
18.
J. L. Flanagan, Speech Analysis: Synthesis and Perception (Springer, New York, 1972).
19.
X.
Zhang
,
T. J.
Royston
,
H. A.
Mansy
, and
R. H.
Sandler
, “
Radiation impedance of a finite circular piston on a viscoelastic half-space with application to medical diagnosis
,”
J. Acoust. Soc. Am.
109
,
795
802
(
2001
).
20.
H. E.
von Gierke
,
H. L.
Oestreicher
,
E. K.
Franke
,
H. O.
Parrack
, and
W. W.
von Wittern
, “
Physics of vibrations in living tissues
,”
J. Appl. Physiol.
4
,
886
900
(
1952
).
21.
G. R.
Wodicka
,
A.
Aguirre
,
P. D.
DeFrain
, and
D. C.
Shannon
, “
Phase delay of pulmonary acoustic transmission from trachea to chest wall
,”
IEEE Trans. Biomed. Eng.
39
,
1053
1058
(
1992
).
22.
S.
Lu
,
P. C.
Doerschuk
, and
G. R.
Wodicka
, “
Parametric phase-delay estimation of sound transmitted through intact human lung
,”
Med. Biol. Eng. Comput.
33
,
293
298
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.