A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1−f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1=0.4L2+39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1−f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.

1.
Dorn, P. A., Konrad-Martin, D., Neely, S. T., Keefe, D. H., Cyr, E., and Gorga, M. P. (2001). “DPOAE Input-output functions in normal and impaired human ears,” Assoc. Res. Otolaryngol. Abs., No. 28.
2.
Gaskill
,
S. A.
, and
Brown
,
A. M.
(
1990
). “
The behavior of the acoustic distortion product, 2 f1−f2, from the human ear and its relation to auditory sensitivity
,”
J. Acoust. Soc. Am.
88
,
821
839
.
3.
Gorga
,
M. P.
,
Neely
,
S. T.
,
Ohlrich
,
B.
,
Hoover
,
B.
,
Redner
,
J.
, and
Peters
,
J.
(
1997
). “
From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss
,”
Ear Hear.
18
,
440
455
.
4.
Hartmann, W. (2000). Signals, Sound and Sensation, Series in Modern Acoustics and Signal Processing (Springer, New York), ISBN 1-56396-283-7.
5.
Heitmann
,
J.
,
Waldmann
,
B.
,
Schnitzler
,
H.-U.
,
Plinkert
,
P. K.
, and
Zenner
,
H.-P.
(
1998
). “
Suppression of distortion product otoacoustic emissions (DPOAE) near 2 f1−f2 removes DP-gram fine structure—Evidence for a secondary generator
,”
J. Acoust. Soc. Am.
103
,
1527
1531
.
6.
Janssen
,
T.
,
Kummer
,
P.
, and
Arnold
,
W.
(
1998
). “
Growth behavior of the 2 f1−f2 distortion product otoacoustic emission in tinnitus
,”
J. Acoust. Soc. Am.
103
,
3418
3430
.
7.
Janssen
,
T.
,
Boege
,
P.
,
Kummer
,
P.
,
Scholz
,
M.
, and
Arnold
,
W.
(
1997
). “
Reconstruction of hearing thresholds by means of DPOAE
,”
Audiol. Akust.
4
,
178
190
.
8.
Kimberley, B. P., Brown, D. K., and Allen, J. B. (1997). “Distortion Product Emissions and Sensorineural Hearing Loss,” in Otoacoustic Emissions: Clinical Applications, edited by M. S. Robinette and T. J. Glattke (Thieme, New York), pp. 181–204.
9.
Kimberley
,
B. P.
,
Hernadi
,
I.
,
Lee
,
A. M.
, and
Brown
,
D. K.
(
1994
). “
Predicting pure-tone thresholds in normal and hearing impaired ears with distortion product emission and age
,”
Ear Hear.
15
,
199
209
.
10.
Kummer
,
P.
,
Janssen
,
T.
, and
Arnold
,
W.
(
1998
). “
The level and growth behavior of the 2 f1−f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss
,”
J. Acoust. Soc. Am.
103
,
3431
3444
.
11.
Kummer
,
P.
,
Janssen
,
T.
,
Hulin
,
P.
, and
Arnold
,
W.
(
2000
). “
Optimal L1−L2 primary tone level separation remains independent of test frequency in humans
,”
Hear. Res.
146
,
47
56
.
12.
Neely
,
S. T.
, and
Kim
,
D. O.
(
1983
). “
An active cochlear model showing sharp tuning and high sensitivity
,”
Hear. Res.
9
,
123
130
.
13.
Robles
,
L.
, and
Ruggero
,
M.
(
2001
). “
Mechanics of the mamalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
14.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
, and
Narayan
,
S. S.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
15.
Stockard, J. J., Stockard, J. E., and Sharbrough, F. W. (1980). “Brainstem auditory evoked potentials in neurology: Methodology, interpretation, clinical application,” in Electrodiagnosis in Clinical Neurology, edited by M. Aminoff (Churchill Livingstone, New York), pp. 370–413.
16.
Whitehead
,
M. L.
,
McCoy
,
M. J.
,
Lonsbury-Martin
,
G. K.
, and
Martin
,
G. K.
(
1995
). “
Dependence of distortion-product otoacoustic emissions in primary tone level in normal and impaired ears. I. Effects of decreasing L2 below L1,
J. Acoust. Soc. Am.
97
,
2346
2358
.
This content is only available via PDF.
You do not currently have access to this content.