An acoustic backscatter technique proposed by Oelze et al. [J. Acoust. Soc. Am. 109, 1826–1832 (2001)] was used to characterize the roughness of porous soil surfaces. Roughness estimation errors are minimized when the effective flow resistivity of the porous soil is high, e.g., above 300 000 mks Rayls/m. Four soil plots were constructed by roughening soil with farming implements. Three plots were sealed using Saran powder dissolved in methyl ethyl ketone (MEK) and then covered to prevent further weathering. A fourth plot was left in the open and exposed to rainfall, which also acted to seal the surface and further change the roughness. In sealing the surface the effective flow resistivity of the surface was increased above 300 000 mks Rayls/m, which is typical for weathered agricultural surfaces. The roughness power spectra of the soil surfaces were measured by acoustic backscatter and alternatively by a laser profiler. Regression analysis was used to approximate each roughness power spectrum versus roughness wave number with a best-fit line. The best-fit line was used to calculate the rms height and the correlation length of the rough surface by integrating the approximate roughness power spectrum over a range of roughness wave number values. The range of roughness wave number values defines the roughness length scales used in the statistical calculations. High-roughness wave numbers correspond to smaller length scales of roughness and low-roughness wave numbers correspond to larger length scales of roughness. Over certain ranges of roughness wave number values the statistics from the acoustic backscatter and laser profiler measurements is in good agreement. However, as the low-cutoff roughness wave number is decreased and the high-cutoff roughness wave number is increased, agreement between the laser and acoustic techniques diminishes.

1.
A. R.
Dexter
, “
Effect of rainfall on the surface micro-relief of tilled soil
,”
J. Terramech.
14
(
1
),
11
22
(
1977
).
2.
J. K.
Mitchell
and
B. A.
Jones
, “
Micro-relief surface depression storage: Analysis of models to describe the depth-storage function
,”
Water Resour. Bull.
12
(
6
),
1205
1222
(
1976
).
3.
J. K.
Mitchell
and
B. A.
Jones
, “
Micro-relief surface depression storage: Changes during rainfall events and their application to rainfall-runoff models
,”
Water Resour. Bull.
14
(
4
),
777
802
(
1978
).
4.
M. J. M.
Römkens
and
J. Y.
Wang
, “
Soil roughness changes from rainfall
,”
Trans. ASAE
30
(
1
),
101
107
(
1987
).
5.
J. K.
Radke
,
M. A.
Otterby
,
R. A.
Young
, and
C. A.
Onstad
, “
A microprocessor automated rillmeter
,”
Trans. ASAE
24
(
2
),
401
404
, 408 (
1981
).
6.
T. H.
Podmore
and
L. F.
Huggins
, “
An automated profile meter for surface roughness measurements
,”
Trans. ASAE
24
(
3
),
663
665
, 669 (
1981
).
7.
M. J. M. Römkens and J. Y. Wang, “Sediment redistribution by raindrop impact,” Proceedings of the Fourth Federal Interagency Sedimentation Conference, 1(3), pp. 10–17, Las Vegas, NV (1986).
8.
M. J. M.
Römkens
,
J. Y.
Wang
, and
R. W.
Darden
, “
A laser microreliefmeter
,”
Trans. ASAE
31
(
2
),
408
413
(
1988
).
9.
M. J. M.
Römkens
and
J. Y.
Wang
, “
Effect of tillage on surface roughness
,”
Trans. ASAE
29
(
2
),
429
433
(
1986
).
10.
M. L.
Oelze
,
J. M.
Sabatier
, and
R.
Raspet
, “
Roughness characterization of porous soil with acoustic backscatter
,”
J. Acoust. Soc. Am.
109
,
1826
1832
(
2001
).
11.
D. R.
Jackson
,
D. P.
Winebrenner
, and
A.
Ishimaru
, “
Application of the composite roughness model to high-frequency bottom backscattering
,”
J. Acoust. Soc. Am.
79
,
1410
1422
(
1986
).
12.
H. M.
Hess
,
K.
Attenborough
, and
N. W.
Heap
, “
Ground characterization by short-range propagation measurements
,”
J. Acoust. Soc. Am.
87
,
1975
1986
(
1990
).
13.
J. M.
Sabatier
,
H.
Hess
,
W. P.
Arnott
,
K.
Attenborough
, and
M. J. M.
Römkens
, “
In situ measurements of soil physical properties by acoustical techniques
,”
Soil Sci. Soc. Am. J.
54
,
68
72
(
1990
).
14.
K.
Attenborough
,
J. M.
Sabatier
,
H. E.
Bass
, and
L. N.
Bolen
, “
The acoustical transfer function at the surface of a layered poroelastic soil
,”
J. Acoust. Soc. Am.
79
,
1353
1358
(
1986
).
15.
H. M.
Moore
and
K.
Attenborough
, “
Acoustic determination of air-filled porosity and relative air permeability of soils
,”
J. Soil Sci.
43
,
211
228
(
1992
).
16.
J. M.
Sabatier
,
D. C.
Sokol
,
C. K.
Fredrickson
,
M. J. M.
Römkens
,
E. H.
Grissinger
, and
J. C.
Shipps
, “
Probe microphone instrumentation of determining soil physical properties: Testing in model porous materials
,”
Soil Tech.
8
,
259
274
(
1996
).
17.
C. Glaretas, “A new method for measuring the acoustic impedance of the ground,” Ph.D. thesis, Pennsylvania State University, PA (1981).
18.
K.
Attenborough
,
S. I.
Hayek
, and
J. M.
Lawther
, “
Propagation of sound above a porous half space
,”
J. Acoust. Soc. Am.
68
,
1493
1501
(
1980
).
19.
K.
Attenborough
, “
Review of ground effects on outdoor sound propagation from continuous broadband sources
,”
Appl. Acoust.
24
,
289
319
(
1988
).
20.
K.
Attenborough
and
S.
Taherzadeh
, “
Propagation from a point source over a rough finite impedance boundary
,”
J. Acoust. Soc. Am.
98
,
1717
1722
(
1995
).
21.
J. P. Chambers, R. Raspet, and J. M. Sabatier, “Incorporating the effects of roughness in outdoor sound propagation models,” in Proceedings of Noise-Con ’96 (Conference on Noise Control Engineering, Seattle) (1996), pp. 905–910.
22.
P.
Boulanger
,
K.
Attenborough
,
S.
Taherzadeh
,
T.
Waters-Fuller
, and
K. M.
Li
, “
Ground effect over hard rough surfaces
,”
J. Acoust. Soc. Am.
104
,
1474
1482
(
1998
).
23.
K.
Attenborough
and
T.
Waters-Fuller
, “
Effective impedance of rough porous ground surfaces
,”
J. Acoust. Soc. Am.
108
,
949
956
(
2000
).
24.
M. L. Oelze, J. M. Sabatier, and R. Raspet, “Roughness measurements of soil surfaces by the laser microreliefmeter and acoustic backscatter,” Soil Sci. Soc. Am. J. (submitted).
25.
R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1983).
26.
L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, New York, 1982).
27.
F. D.
Shields
,
H. E.
Bass
, and
L. N.
Bolen
, “
Tube method of sound-absorption measurement extended to frequencies far above cutoff
,”
J. Acoust. Soc. Am.
62
,
346
353
(
1977
).
28.
D. R.
Jackson
,
K. B.
Briggs
,
K. L.
Williams
, and
M. D.
Richardson
, “
Tests of models for high-frequency seafloor backscatter
,”
IEEE J. Ocean. Eng.
21
(
4
),
458
470
(
1996
).
29.
R. W.
Leonard
, “
Simplified flow resistance measurements
,”
J. Acoust. Soc. Am.
17
,
240
241
(
1946
).
30.
A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2.
31.
E. Y. T.
Kuo
, “
Wave scattering and transmission at irregular surfaces
,”
J. Acoust. Soc. Am.
36
,
2135
2142
(
1964
).
32.
K.
Attenborough
, “
Acoustical characteristics of rigid fibrous absorbent and granular materials
,”
J. Acoust. Soc. Am.
73
,
785
799
(
1983
).
33.
K. B.
Briggs
, “
Microtopographical roughness of shallow-water continental shelves
,”
IEEE J. Ocean. Eng.
14
(
4
),
360
367
(
1989
).
34.
C. G.
Fox
and
D. E.
Hayes
, “
Quantitative methods for analyzing the roughness of the sea bottom
,”
Rev. Geophys.
23
,
1
48
(
1985
).
35.
J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Opt. Soc. Am., Washington, D.C., 1989).
36.
A. N.
Kolmogorov
, “
On the logarithmic normal distribution rules of dimensions of particles by grinding
,”
Mathematika
31
,
99
101
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.