This paper reports two experiments concerning the stimulus specificity of pitch discrimination learning. In experiment 1, listeners were initially trained, during ten sessions (about 11 000 trials), to discriminate a monaural pure tone of 3000 Hz from ipsilateral pure tones with slightly different frequencies. The resulting perceptual learning (improvement in discrimination thresholds) appeared to be frequency-specific since, in subsequent sessions, new learning was observed when the 3000-Hz standard tone was replaced by a standard tone of 1200 Hz, or 6500 Hz. By contrast, a subsequent presentation of the initial tones to the contralateral ear showed that the initial learning was not, or was only weakly, ear-specific. In experiment 2, training in pitch discrimination was initially provided using complex tones that consisted of harmonics 3–7 of a missing fundamental (near 100 Hz for some listeners, 500 Hz for others). Subsequently, the standard complex was replaced by a standard pure tone with a frequency which could be either equal to the standard complex’s missing fundamental or remote from it. In the former case, the two standard stimuli were matched in pitch. However, this perceptual relationship did not appear to favor the transfer of learning. Therefore, the results indicated that pitch discrimination learning is, at least to some extent, timbre-specific, and cannot be viewed as a reduction of an internal noise which would affect directly the output of a neural device extracting pitch from both pure tones and complex tones including low-rank harmonics.

1.
Ahissar
,
M.
, and
Hochstein
,
S.
(
1997
). “
Task difficulty and the specificity of perceptual learning
,”
Nature (London)
387
,
401
406
.
2.
Attneave
,
F.
, and
Olson
,
R. K.
(
1971
). “
Pitch as a medium: A new approach to psychophysical scaling
,”
Am. J. Psychol.
84
,
147
166
.
3.
Cansino
,
S.
, and
Williamson
,
S. J.
(
1997
). “
Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task
,”
Brain Res.
764
,
53
66
.
4.
Carlyon
,
R. P.
(
1998
). “
Comments on ‘A unitary model of pitch perception’ [J. Acoust. Soc. Am. 102, 1811–1820 (1997)]
,”
J. Acoust. Soc. Am.
104
,
1118
1121
.
5.
Carlyon
,
R. P.
, and
Shackleton
,
T. M.
(
1994
). “
Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms?
J. Acoust. Soc. Am.
95
,
3541
3554
.
6.
Demany
,
L.
(
1985
). “
Perceptual learning in frequency discrimination
,”
J. Acoust. Soc. Am.
78
,
1118
1120
.
7.
Edeline
,
J. M.
(
1999
). “
Learning-induced physiological plasticity in the thalamo-cortical sensory systems: A critical evaluation of receptive field plasticity, map changes and their potential mechanisms
,”
Prog. Neurobiol.
57
,
165
224
.
8.
Fahle
,
M.
,
Edelman
,
S.
, and
Poggio
,
T.
(
1995
). “
Fast perceptual learning in hyperacuity
,”
Vision Res.
35
,
3003
3013
.
9.
Fiorentini
,
A.
, and
Berardi
,
N.
(
1981
). “
Learning in grating waveform discrimination: Specificity for orientation and spatial frequency
,”
Vision Res.
21
,
1149
1158
.
10.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
11.
Grimault, N., Micheyl, C., Carlyon, R. P., and Collet, L. (in press). “Evidence for two pitch encoding mechanisms using a selective auditory training paradigm,” Percept. Psychophys. .
12.
Hall
,
J. W.
, and
Peters
,
R. W.
(
1981
). “
Pitch for nonsimultaneous successive harmonics in quiet and noise
,”
J. Acoust. Soc. Am.
69
,
509
513
.
13.
Hall
,
J. W.
, and
Soderquist
,
D. R.
(
1978
). “
Adaptation of residue pitch
,”
J. Acoust. Soc. Am.
63
,
883
893
.
14.
Harris
,
J. A.
,
Harris
,
I. M.
, and
Diamond
,
M. E.
(
2001
). “
The topography of tactile learning in humans
,”
J. Neurosci.
21
,
1056
1061
.
15.
Hartmann, W. M. (1997). Signals, Sound, and Sensation (AIP, Woodbury, NY).
16.
Houtsma, A. J. M. (1995). “Pitch perception,” in Hearing, edited by B. C. J. Moore (Academic, San Diego), pp. 267–295.
17.
Houtsma
,
A. J. M.
, and
Fleuren
,
J. F. M.
(
1991
). “
Analytic and synthetic pitch of two-tone complexes
,”
J. Acoust. Soc. Am.
90
,
1674
1676
.
18.
Irvine
,
D. R. F.
,
Martin
,
R.
,
Klimkeit
,
E.
, and
Smith
,
R.
(
2000
). “
Specificity of perceptual learning in a frequency discrimination task
,”
J. Acoust. Soc. Am.
108
,
2964
2968
.
19.
Kaernbach
,
C.
(
1991
). “
Simple adaptive testing with the weighted up–down method
,”
Percept. Psychophys.
49
,
227
229
.
20.
Kaernbach
,
C.
, and
Demany
,
L.
(
1998
). “
Psychophysical evidence against the autocorrelation theory of auditory temporal processing
,”
J. Acoust. Soc. Am.
104
,
2298
2306
.
21.
Karni
,
A.
, and
Sagi
,
D.
(
1991
). “
Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity
,”
Proc. Natl. Acad. Sci. U.S.A.
88
,
4966
4972
.
22.
Karni
,
A.
, and
Sagi
,
D.
(
1993
). “
The time course of learning a visual skill
,”
Nature (London)
365
,
250
252
.
23.
Karni
,
A.
,
Tanne
,
D.
,
Rubenstein
,
B. S.
,
Askenasy
,
J. J. M.
, and
Sagi
,
D.
(
1994
). “
Dependence on REM sleep of overnight improvement of a perceptual skill
,”
Science
265
,
679
682
.
24.
Laguitton
,
V.
,
Demany
,
L.
,
Semal
,
C.
, and
Liégeois-Chauvel
,
C.
(
1998
). “
Pitch perception: A difference between right- and left-handed listeners
,”
Neuropsychologia
36
,
201
207
.
25.
Leek
,
M. R.
, and
Watson
,
C. S.
(
1984
). “
Learning to detect auditory pattern components
,”
J. Acoust. Soc. Am.
76
,
1037
1044
.
26.
Licklider
,
J. C. R.
(
1951
). “
A duplex theory of pitch perception
,”
Experientia
7
,
128
134
.
27.
McFadden
,
D.
(
1988
). “
Failure of a missing-fundamental complex to interact with masked and unmasked pure tones at its fundamental frequency
,”
Hear. Res.
32
,
23
40
.
28.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1991a
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch identification
,”
J. Acoust. Soc. Am.
89
,
2866
2882
.
29.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1991b
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II. Phase sensitivity
,”
J. Acoust. Soc. Am.
89
,
2883
2894
.
30.
Meddis
,
R.
, and
O’Mard
,
L.
(
1997
). “
A unitary model of pitch perception
,”
J. Acoust. Soc. Am.
102
,
1811
1820
.
31.
Moore
,
B. C. J.
(
1973
). “
Frequency difference limens for short-duration tones
,”
J. Acoust. Soc. Am.
54
,
610
619
.
32.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1989
). “
Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation
,”
J. Acoust. Soc. Am.
86
,
1722
1732
.
33.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1990
). “
Frequency discrimination of complex tones with overlapping and nonoverlapping harmonics
,”
J. Acoust. Soc. Am.
87
,
2163
2177
.
34.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1991
). “
Effects of signal-to-noise ratio on the frequency discrimination of complex tones with overlapping or nonoverlapping harmonics
,”
J. Acoust. Soc. Am.
89
,
2858
2865
.
35.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Proctor
,
G. M.
(
1992
). “
Accuracy of pitch matching for pure tones and for complex tones with overlapping or nonoverlapping harmonics
,”
J. Acoust. Soc. Am.
91
,
3443
3450
.
36.
Nelson
,
D. A.
,
Stanton
,
M. E.
, and
Freyman
,
R. L.
(
1983
). “
A general equation describing frequency discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
73
,
2117
2123
.
37.
Plomp, R. (1976). Aspects of Tone Sensation (Academic, London).
38.
Pressnitzer, D., and Patterson, R. D. (2001). “Distortion products and the pitch of harmonic complex tones,” in Physiological and Psychophysical Bases of Auditory Function, edited by D. J. Breebaart, A. J. M. Houtsma, A. Kohlrausch, V. F. Prijs, and R. Schoonhoven (Shaker, Maastricht, The Netherlands), pp. 97–104.
39.
Rajan
,
R.
,
Irvine
,
D. R. F.
,
Wise
,
L. Z.
, and
Heil
,
P.
(
1993
). “
Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex
,”
J. Comp. Neurol.
338
,
17
49
.
40.
Recanzone
,
G. H.
,
Schreiner
,
C. E.
, and
Merzenich
,
M. M.
(
1993
). “
Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys
,”
J. Neurosci.
13
,
87
103
.
41.
Robinson
,
K.
, and
Summerfield
,
A. Q.
(
1996
). “
Adult auditory learning and training
,”
Ear Hear.
17
,
51S
65S
.
42.
Rose
,
J. E.
,
Brugge
,
J. F.
,
Anderson
,
D. J.
, and
Hind
,
J. E.
(
1967
). “
Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey
,”
J. Neurophysiol.
30
,
769
793
.
43.
Sachs
,
M. B.
, and
Young
,
E. D.
(
1980
). “
Effects of nonlinearities on speech encoding in the auditory nerve
,”
J. Acoust. Soc. Am.
68
,
858
875
.
44.
Sathian
,
K.
, and
Zangaladze
,
A.
(
1997
). “
Tactile learning is task specific but transfers between fingers
,”
Percept. Psychophys.
59
,
119
128
.
45.
Semal
,
C.
, and
Demany
,
L.
(
1990
). “
The upper limit of ‘musical’ pitch
,”
Music Percept.
8
,
165
176
.
46.
Semal
,
C.
, and
Demany
,
L.
(
1991
). “
Dissociation of pitch from timbre in auditory short-term memory
,”
J. Acoust. Soc. Am.
89
,
2404
2410
.
47.
Semal
,
C.
, and
Demany
,
L.
(
1993
). “
Further evidence for an autonomous processing of pitch in auditory short-term memory
,”
J. Acoust. Soc. Am.
94
,
1315
1322
.
48.
Semal
,
C.
,
Demany
,
L.
,
Ueda
,
K.
, and
Hallé
,
P. A.
(
1996
). “
Speech versus nonspeech in pitch memory
,”
J. Acoust. Soc. Am.
100
,
1132
1140
.
49.
Shackleton
,
T. M.
, and
Carlyon
,
R. P.
(
1994
). “
The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination
,”
J. Acoust. Soc. Am.
95
,
3529
3540
.
50.
Smoorenburg
,
G. F.
(
1970
). “
Pitch perception of two-frequency stimuli
,”
J. Acoust. Soc. Am.
48
,
924
942
.
51.
Spengler
,
F.
,
Roberts
,
T. P. L.
,
Poeppel
,
D.
,
Byl
,
N.
,
Wang
,
X.
,
Rowley
,
H. A.
, and
Merzenich
,
M. M.
(
1997
). “
Learning transfer and neuronal plasticity in humans trained in tactile discrimination
,”
Neurosci. Lett.
232
,
151
154
.
52.
Terhardt
,
E.
(
1974
). “
Pitch, consonance, and harmony
,”
J. Acoust. Soc. Am.
55
,
1061
1069
.
53.
Terhardt
,
E.
(
1979
). “
Calculating virtual pitch
,”
Hear. Res.
1
,
155
182
.
54.
Weinberger
,
N. M.
(
1995
). “
Dynamic regulation of receptive fields and maps in the sensory cortex
,”
Annu. Rev. Neurosci.
18
,
129
158
.
55.
Whitfield, I. C. (1970). “Central nervous processing in relation to spatio-temporal discrimination of auditory patterns,” in Frequency Analysis and Periodicity Detection in Hearing, edited by R. Plomp and G. F. Smoorenburg (Sijthoff, Leiden, The Netherlands), pp. 136–147.
56.
Wier
,
C. C.
,
Jesteadt
,
W.
, and
Green
,
D. M.
(
1977
). “
Frequency discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
61
,
178
184
.
57.
Wright
,
B. A.
(
1998
). “
Generalization of auditory-discrimination learning
,”
Assoc. Res. Otolaryngol. Abs., Abs.
413
,
104
.
58.
Wright
,
B. A.
,
Buonomano
,
D. V.
,
Mahncke
,
H. W.
, and
Merzenich
,
M. M.
(
1997
). “
Learning and generalization of auditory temporal-interval discrimination in humans
,”
J. Neurosci.
17
,
3956
3963
.
This content is only available via PDF.
You do not currently have access to this content.