The relation between auditory filters estimated from psychophysical methods and peripheral tuning was evaluated using a computational auditory-nerve (AN) model that included many of the response properties associated with nonlinear cochlear tuning. The phenomenological AN model included the effects of dynamic level-dependent tuning, compression, and suppression on the responses of high-, medium-, and low-spontaneous-rate AN fibers. Signal detection theory was used to evaluate psychophysical performance limits imposed by the random nature of AN discharges and by random-noise stimuli. The power-spectrum model of masking was used to estimate psychophysical auditory filters from predicted AN-model detection thresholds for a tone signal in fixed-level notched-noise maskers. Results demonstrate that the role of suppression in broadening peripheral tuning in response to the noise masker has implications for the interpretation of psychophysical auditory-filter estimates. Specifically, the estimated psychophysical auditory-filter equivalent rectangular bandwidths (ERBs) that were derived from the nonlinear AN model with suppression always overestimated the ERBs of the low-level peripheral model filters. Further, this effect was larger for an 8-kHz signal than for a 2-kHz signal, suggesting a potential characteristic-frequency (CF) dependent bias in psychophysical estimates of auditory filters due to the increase in strength of cochlear nonlinearity with increases in CF.

1.
Allen, J.B. (2001). “Nonlinear cochlear signal processing,” in Physiology of the Ear, edited by A.F. Jahn and J. Santos-Sacchi (Singular Thomson Learning, San Diego), pp. 393–442.
2.
Anderson
,
D.J.
,
Rose
,
J.E.
,
Hind
,
J.E.
, and
Brugge
,
J.F.
(
1971
). “
Temporal position of discharges in single auditory nerve fibers within the cycle of a sinewave stimulus: Frequency and intensity effects
,”
J. Acoust. Soc. Am.
49
,
1131
1139
.
3.
Arthur
,
R.M.
,
Pfeiffer
,
R.R.
, and
Suga
,
N.
(
1971
). “
Properties of ‘two-tone inhibition’ in primary auditory neurons
,”
J. Physiol. (London)
212
,
593
609
.
4.
Cheatham
,
M.A.
, and
Dallos
,
P.
(
1998
). “
The level dependence of response phase: Observations from cochlear hair cells
,”
J. Acoust. Soc. Am.
104
,
356
369
.
5.
Colburn, H.S. (1969). “Some physiological limitations on binaural performance,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
6.
Colburn
,
H.S.
(
1973
). “
Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination
,”
J. Acoust. Soc. Am.
54
,
1458
1470
.
7.
Colburn, H.S. (1981). “Intensity perception: Relation of intensity discrimination to auditory-nerve firing patterns,” Internal Memorandum, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA.
8.
Cooper
,
N.P.
, and
Rhode
,
W.S.
(
1997
). “
Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea
,”
J. Neurophysiol.
78
,
261
270
.
9.
Delgutte, B. (1987). “Peripheral auditory processing of speech information: Implications from a physiological study of intensity discrimination,” in The Psychophysics of Speech Perception, edited by M.E.H. Schouten (Nijhoff, Dordrecht, The Netherlands), pp. 333–353.
10.
Delgutte
,
B.
(
1990a
). “
Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibers
,”
J. Acoust. Soc. Am.
87
,
791
809
.
11.
Delgutte
,
B.
(
1990b
). “
Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level
,”
Hear. Res.
49
,
225
246
.
12.
Derleth
,
R.P.
, and
Dau
,
T.
(
2000
). “
On the role of envelope fluctuation processing in spectral masking
,”
J. Acoust. Soc. Am.
108
,
285
296
.
13.
Evans, E.F., Pratt, S.R., Spenner, H., and Cooper, N.P. (1992). “Comparisons of physiological and behavioral properties: Auditory frequency selectivity,” in Auditory Physiology and Perception, edited by Y. Cazals, L. Demany, and K. Horner (Pergamon, New York), pp. 159–169.
14.
Fletcher
,
H.
(
1940
). “
Auditory patterns
,”
Rev. Mod. Phys.
12
,
47
65
.
15.
Fletcher, H. (1953). Speech and Hearing in Communication (Van Nostrand, New York).
16.
Geisler
,
C.D.
, and
Sinex
,
D.G.
(
1980
). “
Responses of primary auditory fibers to combined noise and tonal stimuli
,”
Hear. Res.
3
,
317
334
.
17.
Glasberg
,
B.R.
, and
Moore
,
B.C.J.
(
1986
). “
Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments
,”
J. Acoust. Soc. Am.
79
,
1020
1033
.
18.
Glasberg
,
B.R.
, and
Moore
,
B.C.J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
19.
Glasberg
,
B.R.
, and
Moore
,
B.C.J.
(
2000
). “
Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise
,”
J. Acoust. Soc. Am.
108
,
2318
2328
.
20.
Green, D.M., and Swets, J.A. (1966). Signal Detection Theory and Psychophysics (Wiley, New York; reprinted 1988 by Peninsula, Los Altos, CA).
21.
Greenwood
,
D.D.
(
1961
). “
Critical bandwidth and the frequency coordinates of the basilar membrane
,”
J. Acoust. Soc. Am.
33
,
1344
1356
.
22.
Greenwood
,
D.D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
23.
Heinz, M.G. (2000). “Quantifying the effects of the cochlear amplifier on temporal and average-rate information in the auditory nerve,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
24.
Heinz
,
M.G.
,
Colburn
,
H.S.
, and
Carney
,
L.H.
(
2001a
). “
Evaluating auditory performance limits. I. One-parameter discrimination using a computational model for the auditory nerve
,”
Neural Comput.
13
,
2273
2316
.
25.
Heinz
,
M.G.
,
Colburn
,
H.S.
, and
Carney
,
L.H.
(
2001b
). “
Rate and timing cues associated with the cochlear amplifier: Level discrimination based on monaural cross-frequency coincidence detection
,”
J. Acoust. Soc. Am.
110
,
2065
2084
.
26.
Heinz
,
M.G.
,
Zhang
,
X.
,
Bruce
,
I.C.
, and
Carney
,
L.H.
(
2001c
). “
Auditory-nerve model for predicting performance limits of normal and impaired listeners
,”
ARLO
2
,
91
96
.
27.
Hicks
,
M.L.
, and
Bacon
,
S.P.
(
1999
). “
Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing
,”
J. Acoust. Soc. Am.
105
,
326
338
.
28.
Houtgast
,
T.
(
1977
). “
Auditory-filter characteristics derived from direct-masking data and pulsation-threshold data with a rippled-noise masker
,”
J. Acoust. Soc. Am.
62
,
409
415
.
29.
Kiang
,
N.Y.S.
, and
Moxon
,
E.C.
(
1974
). “
Tails of tuning curves of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
55
,
620
630
.
30.
Lentz
,
J.J.
,
Richards
,
V.M.
, and
Matiasek
,
M.R.
(
1999
). “
Different auditory filter bandwidth estimates based on profile analysis, notched noise, and hybrid tasks
,”
J. Acoust. Soc. Am.
106
,
2779
2792
.
31.
Liberman
,
M.C.
(
1978
). “
Auditory-nerve response from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
32.
Liberman
,
M.C.
, and
Dodds
,
L.W.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves
,”
Hear. Res.
16
,
55
74
.
33.
Lutfi
,
R.A.
, and
Patterson
,
R.D.
(
1984
). “
On the growth of masking asymmetry with stimulus intensity
,”
J. Acoust. Soc. Am.
76
,
739
745
.
34.
Miller
,
R.L.
,
Schilling
,
J.R.
,
Franck
,
K.R.
, and
Young
,
E.D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ɛ/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
,
3602
3616
.
35.
Moore
,
B.C.J.
(
1978
). “
Psychophysical tuning curves measured in simultaneous and forward masking
,”
J. Acoust. Soc. Am.
63
,
524
532
.
36.
Moore, B.C.J. (1995a). “Frequency analysis and masking,” in Hearing, edited by B.C.J. Moore (Academic, New York), Chap. 5.
37.
Moore, B.C.J. (1995b). Perceptual Consequences of Cochlear Damage (Oxford University Press, New York).
38.
Moore
,
B.C.J.
, and
Glasberg
,
B.R.
(
1981
). “
Auditory filter shapes derived in simultaneous and forward masking
,”
J. Acoust. Soc. Am.
70
,
1003
1014
.
39.
Moore
,
B.C.J.
, and
Glasberg
,
B.R.
(
1982
). “
Interpreting the role of suppression in psychophysical tuning curves
,”
J. Acoust. Soc. Am.
72
,
1374
1379
.
40.
Moore
,
B.C.J.
, and
Glasberg
,
B.R.
(
1986
). “
Comparisons of frequency selectivity in simultaneous and forward masking for subjects with unilateral cochlear impairments
,”
J. Acoust. Soc. Am.
80
,
93
107
.
41.
Moore, B.C.J., and O’Loughlin, B.J. (1986). “The use of nonsimultaneous masking to measure frequency selectivity and suppression,” in Frequency Selectivity in Hearing, edited by B.C.J. Moore (Academic, London), pp. 179–250.
42.
Moore
,
B.C.J.
, and
Glasberg
,
B.R.
(
1987
). “
Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns
,”
Hear. Res.
28
,
209
225
.
43.
Moore
,
B.C.J.
,
Poon
,
P.W.F.
,
Bacon
,
S.P.
, and
Glasberg
,
B.R.
(
1987
). “
The temporal course of masking and the auditory filter shape
,”
J. Acoust. Soc. Am.
81
,
1873
1880
.
44.
Moore
,
B.C.J.
, and
Oxenham
,
A.J.
(
1998
). “
Psychoacoustic consequences of compression in the peripheral auditory system
,”
Psychol. Rev.
105
,
108
124
.
45.
Moore
,
B.C.J.
,
Peters
,
R.W.
, and
Stone
,
M.A.
(
1999a
). “
Benefits of linear amplification and multichannel compression for speech comprehension in backgrounds with spectral and temporal dips
,”
J. Acoust. Soc. Am.
105
,
400
411
.
46.
Moore
,
B.C.J.
,
Vickers
,
D.A.
,
Plack
,
C.J.
, and
Oxenham
,
A.J.
(
1999b
). “
Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism
,”
J. Acoust. Soc. Am.
106
,
2761
2778
.
47.
Oxenham
,
A.J.
, and
Moore
,
B.C.J.
(
1994
). “
Modeling the additivity of nonsimultaneous masking
,”
Hear. Res.
80
,
105
118
.
48.
Oxenham
,
A.J.
, and
Plack
,
C.J.
(
1997
). “
A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing
,”
J. Acoust. Soc. Am.
101
,
3666
3675
.
49.
Oxenham
,
A.J.
, and
Plack
,
C.J.
(
1998
). “
Suppression and the upward spread of masking
,”
J. Acoust. Soc. Am.
104
,
3500
3510
.
50.
Patterson
,
R.D.
(
1976
). “
Auditory filter shapes derived with noise stimuli
,”
J. Acoust. Soc. Am.
59
,
640
654
.
51.
Patterson
,
R.D.
,
Nimmo-Smith
,
I.
,
Weber
,
D.L.
, and
Milroy
,
R.
(
1982
). “
The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold
,”
J. Acoust. Soc. Am.
72
,
1788
1803
.
52.
Patuzzi
,
R.
, and
Robertson
,
D.
(
1988
). “
Tuning in the mammalian cochlea
,”
Physiol. Rev.
68
,
1009
1082
.
53.
Patuzzi
,
R.B.
,
Yates
,
G.K.
, and
Johnstone
,
B.M.
(
1989
). “
Outer hair receptor currents and sensorineural hearing loss
,”
Hear. Res.
42
,
47
72
.
54.
Peters
,
R.W.
,
Moore
,
B.C.J.
, and
Baer
,
T.
(
1998
). “
Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people
,”
J. Acoust. Soc. Am.
103
,
577
587
.
55.
Pickles
,
J.O.
(
1984
). “
Frequency threshold curves and simultaneous masking functions in single fibres of the guinea pig auditory nerve
,”
Hear. Res.
14
,
245
256
.
56.
Pickles, J.O. (1988). An Introduction to the Physiology of Hearing (Academic, New York).
57.
Plack
,
C.J.
, and
Oxenham
,
A.J.
(
1998
). “
Basilar-membrane nonlinearity and the growth of forward masking
,”
J. Acoust. Soc. Am.
103
,
1598
1608
.
58.
Rasmussen
,
G.L.
(
1940
). “
Studies of the VIIIth cranial nerve in man
,”
Laryngoscope
50
,
67
83
.
59.
Recio
,
A.
,
Rich
,
N.C.
,
Narayan
,
S.S.
, and
Ruggero
,
M.A.
(
1998
). “
Basilar-membrane responses to clicks at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
103
,
1972
1989
.
60.
Robinson
,
D.W.
, and
Dadson
,
R.S.
(
1956
). “
A redetermination of the equal-loudness relations for pure tones
,”
Br. J. Appl. Phys.
7
,
166
181
.
61.
Rosen
,
S.
, and
Baker
,
R.J.
(
1994
). “
Characterising auditory filter nonlinearity
,”
Hear. Res.
73
,
231
243
.
62.
Rosen
,
S.
,
Baker
,
R.J.
, and
Darling
,
A.
(
1998
). “
Auditory filter nonlinearity at 2 kHz in normal hearing listeners
,”
J. Acoust. Soc. Am.
103
,
2539
2550
.
63.
Ruggero, M.A. (1992). “Physiology and coding of sound in the auditory nerve,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A.N. Popper and R.R. Fay (Springer, New York), pp. 34–93.
64.
Ruggero
,
M.A.
, and
Rich
,
N.C.
(
1991
). “
Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane
,”
J. Neurosci.
11
,
1057
1067
.
65.
Ruggero
,
M.A.
,
Robles
,
L.
, and
Rich
,
N.C.
(
1992
). “
Two-tone suppression in the basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate suppression
,”
J. Neurophysiol.
68
,
1087
1099
.
66.
Ruggero
,
M.A.
,
Rich
,
N.C.
,
Recio
,
A.
,
Narayan
,
S.S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
67.
Sachs
,
M.B.
, and
Kiang
,
N.Y.S.
(
1968
). “
Two-tone inhibition in auditory-nerve fibers
,”
J. Acoust. Soc. Am.
43
,
1120
1128
.
68.
Sachs
,
M.B.
, and
Abbas
,
P.J.
(
1974
). “
Rate versus level functions for auditory nerve fibers in cats: Tone burst stimuli
,”
J. Acoust. Soc. Am.
56
,
1835
1847
.
69.
Sewell
,
W.F.
(
1984
). “
The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats
,”
Hear. Res.
14
,
305
314
.
70.
Shailer
,
M.J.
,
Moore
,
B.C.J.
,
Glasberg
,
B.R.
,
Watson
,
N.
, and
Harris
,
S.
(
1990
). “
Auditory filter shapes at 8 and 10 kHz
,”
J. Acoust. Soc. Am.
88
,
141
148
.
71.
Shera, C.A., and Zweig, G. (1993). “Order from chaos: Resolving the paradox of periodicity in evoked otoacoustic emission,” in Biophysics of Hair Cell Sensory Systems, edited by H. Duifhuis, J. W. Horst, P. van Dijk, and S. M. van Netten (World Scientific, Singapore), pp. 54–63.
72.
Shera, C.A., and Guinan, J.J., Jr. (2000). “Frequency dependence of stimulus-frequency-emission phase: Implications for cochlear mechanics,” in Recent Developments in Auditory Mechanics, edited by H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, and T. Koike (World Scientific, Singapore), pp. 381–387.
73.
Shera, C.A., Guinan, Jr., J.J., and Oxenham, A.J. (2002). “Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements,” Proc. Natl. Acad. Sci. USA, in press.
74.
Siebert, W.M. (1968). “Stimulus transformations in the peripheral auditory system,” in Recognizing Patterns, edited by P.A. Kolers and M. Eden (MIT Press, Cambridge, MA), pp. 104–133.
75.
Siebert
,
W.M.
(
1970
). “
Frequency discrimination in the auditory system: Place or periodicity mechanisms?
,”
Proc. IEEE
58
,
723
730
.
76.
Sinex
,
D.G.
, and
Havey
,
D.C.
(
1986
). “
Neural mechanisms of tone-on-tone masking: Patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve
,”
J. Neurophysiol.
56
,
1763
1780
.
77.
van Tasell
,
D.J.
(
1993
). “
Hearing loss, speech, and hearing aids
,”
J. Speech Hear. Res.
36
,
228
244
.
78.
van Trees, H.L. (1968). Detection, Estimation, and Modulation Theory: Part I (Wiley, New York), Chap. 2.
79.
Vogten
,
L.L.M.
(
1978
). “
Low-level pure-tone masking: A comparison of ‘tuning curves’ obtained with simultaneous and forward masking
,”
J. Acoust. Soc. Am.
63
,
1520
1527
.
80.
von Helmholtz, H.L.F. (1863). Die Lehre von den Tonempfindungen als Physiologische Grundlage für die Theorie der Musik (F. Vieweg und Sohn, Braunschweig, Germany). Translated as: On the Sensations of Tone as a Physiological Basis for the Theory of Music, by A.J. Ellis from the 4th German edition, 1877, Leymans, London, 1885 (reprinted by Dover, New York, 1954).
81.
Winter
,
I.M.
, and
Palmer
,
A.R.
(
1991
). “
Intensity coding in low-frequency auditory-nerve fibers of the guinea pig
,”
J. Acoust. Soc. Am.
90
,
1958
1967
.
82.
Yates, G.K. (1995). “Cochlear structure and function,” in Hearing, edited by B.C.J. Moore (Academic, New York), pp. 41–74.
83.
Young
,
E.D.
, and
Barta
,
P.E.
(
1986
). “
Rate responses of auditory-nerve fibers to tones in noise near masked threshold
,”
J. Acoust. Soc. Am.
79
,
426
442
.
84.
Zhang
,
X.
,
Heinz
,
M.G.
,
Bruce
,
I.C.
, and
Carney
,
L.H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers. I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
85.
Zweig
,
G.
, and
Shera
,
C.A.
(
1995
). “
The origin of periodicity in the spectrum of evoked otoacoustic emissions
,”
J. Acoust. Soc. Am.
98
,
2018
2047
.
This content is only available via PDF.
You do not currently have access to this content.