The conjugate gradient method with edge preserving regularization (CGEP) is applied to the ultrasound inverse scattering problem for the early detection of breast tumors. To accelerate image reconstruction, several different pattern classification schemes are introduced into the CGEP algorithm. These classification techniques are compared for a full-sized, two-dimensional breast model. One of these techniques uses two parameters, the sound speed and attenuation, simultaneously to perform classification based on a Bayesian classifier and is called bivariate material classification (BMC). The other two techniques, presented in earlier work, are univariate material classification (UMC) and neural network (NN) classification. BMC is an extension of UMC, the latter using attenuation alone to perform classification, and NN classification uses a neural network. Both noiseless and noisy cases are considered. For the noiseless case, numerical simulations show that the CGEP–BMC method requires 40% fewer iterations than the CGEP method, and the CGEP–NN method requires 55% fewer. The CGEP–BMC and CGEP–NN methods yield more accurate reconstructions than the CGEP method. A quantitative comparison of the CGEP–BMC, CGEP–NN, and GN–UMC methods shows that the CGEP–BMC and CGEP–NN methods are more robust to noise than the GN–UMC method, while all three are similar in computational complexity.

1.
American Cancer Society, “Breast Cancer Facts and Figures—1997,” Atlanta, 1-800-ACS-2345, 1997.
2.
Q.
Zhu
and
B. D.
Steinberg
, “
Wavefront amplitude distribution in the female breast
,”
J. Acoust. Soc. Am.
96
,
1
9
(
1994
).
3.
R. J. Pauls and B. D. Steinberg, A refraction-based simulation to explore wavefront distortion in ultrasound mammography: Refraction-induced amplitude effects, Internal Report UP-14-92, Valley Forge Research Center, University of Pennsylvania, 1992.
4.
C. W.
Manry
and
S. L.
Broschat
, “
The FDTD method for ultrasound propagation through a two-dimensional model of the human breast
,”
J. Acoust. Soc. Am.
94
,
1774
1785
(
1993
).
5.
W. C.
Chew
,
Y. M.
Wang
,
G.
Otto
,
D.
Lesselier
, and
J. C.
Bolomey
, “
On the inverse source method of solving scattering problems
,”
Inverse Probl.
10
,
547
553
(
1994
).
6.
W. C.
Chew
and
Y. M.
Wang
, “
Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method
,”
IEEE Trans. Med. Imaging
9
,
218
225
(
1990
).
7.
L.
Liu
,
X.
Zhang
, and
S. L.
Broschat
, “
Ultrasound imaging using variations of the iterative Born technique
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
574
583
(
1999
).
8.
D. T.
Borup
,
S. A.
Johnson
,
W. W.
Kim
, and
M.J.
Berggren
, “
Nonperturbative diffraction tomography via Gaussian-Newton iteration applied to the scattering integral equation
,”
Ultrason. Imaging
14
,
69
85
(
1992
).
9.
C. W.
Manry
and
S. L.
Broschat
, “
Inverse imaging of the breast with a material classification technique
,”
J. Acoust. Soc. Am.
103
,
1538
1546
(
1998
).
10.
R. E.
Kleinman
and
P. M.
van den Berg
, “
A modified gradient method for two-dimensional problems in tomography
,”
J. Comput. Appl. Math.
42
,
17
35
(
1992
).
11.
A.
Roger
, “
Newton-Kantorovitch algorithm applied to the electromagnetic inverse problem
,”
IEEE Trans. Antennas Propag.
29
,
232
238
(
1981
).
12.
A.
Frenchois
and
C.
Pichot
, “
Microwave imaging—complex permittivity reconstruction with a Levenberg-Marquardt method
,”
IEEE Trans. Antennas Propag.
45
,
203
215
(
1997
).
13.
N.
Joachimowicz
,
C.
Pichot
, and
J.-P.
Hugonin
, “
Inverse scattering: An iterative numerical method for electromagnetic imaging
,”
IEEE Trans. Antennas Propag.
39
,
1742
1752
(
1991
).
14.
P. M.
van den Berg
,
B. J.
Kooij
, and
R. E.
Kleinman
, “
Image reconstruction from Ipswich data—II
,”
IEEE Antennas Propag. Mag.
39
,
29
32
(
1997
).
15.
P.
Lobel
,
R.
Kleinman
,
C.
Pichot
,
L.
Blanc-Feraud
, and
M.
Barlaud
, “
Conjugate gradient method for solving inverse scattering with experimental data
,”
IEEE Antennas Propag. Mag.
38
,
48
51
(
1996
).
16.
P.
Lobel
,
L.
Blanc-Feraud
,
C.
Pichot
, and
M.
Barlaud
, “
A new regularization scheme for inverse scattering
,”
Inverse Probl.
13
,
403
410
(
1997
).
17.
C. Pichot, P. Lobel, L. Blanc-Feraud, M. Barlaud, K. Belkebir, J. M. Elissalt, and J. M. Geffrin, “Gradient and Newton Kantorovich methods for microwave tomography,” in Inverse Problems in Medical Imaging and Nondestructive Testing, edited by H. W. Engl, A. Louis, and W. Rundell (Springer, New York, 1997), pp. 169–187.
18.
X. Zhang, S. L. Broschat, and P. J. Flynn, “A conjugate gradient-neutral network technique for ultrasound inverse imaging,” to appear in J. Comput. Acoust.
19.
H. A.
van der Vost
, “
BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
13
,
631
644
(
1992
).
20.
E. L.
Madsen
,
J. A.
Zagzebski
,
G. R.
Frank
,
J. F.
Greenleaf
, and
P.L.
Carson
, “
Anthropomorphic breast phantoms for assessing ultrasonic imaging performance and for training ultrasonographers: Part 2
,”
J. Clin. Ultrasound
10
,
91
100
(
1982
).
21.
S. A.
Johnson
,
F.
Stegner
,
C.
Wilcox
,
J.
Ball
, and
M. J.
Berggren
, “
Wave equations and inverse solutions for soft tissue
,”
Acoust. Imaging
11
,
409
424
(
1982
).
22.
A. Tikhonov, V. Arsenin, and F. John, Solutions to Ill-Posed Problems (Wiley, New York, 1997).
23.
R. F. Harrington, Field Computation by Moment Methods (MacMillan, New York, 1968).
24.
D. T.
Borup
and
O. P.
Gandhi
, “
Calculation of high-resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method
,”
IEEE Trans. Microwave Theory Tech.
33
,
417
419
(
1985
).
25.
X. Zhang, S. L. Broschat, and P. J. Flynn (unpublished).
26.
P.
Charbonnier
,
L.
Blanc-Feraud
,
G.
Aubert
, and
M.
Barlaud
, “
Deterministic edge-preserving regularization in computed imaging
,”
IEEE Trans. Image Process.
6
,
298
311
(
1997
).
27.
D.
Geman
and
G.
Reynolds
, “
Constrained restoration and the recovery of discontinuity
,”
IEEE Trans. Pattern Anal. Mach. Intell.
14
,
367
383
(
1992
).
28.
R. Gonzales and R. Woods, Digital Image Processing (Addison-Wesley, New York, 1992).
This content is only available via PDF.
You do not currently have access to this content.