This study examines optimal conversions of speech sounds to audible electric currents in cochlear-implant listeners. The speech dynamic range was measured for 20 consonants and 12 vowels spoken by five female and five male talkers. Even when the maximal root-mean-square (rms) level was normalized for all phoneme tokens, both broadband and narrow-band acoustic analyses showed an approximately 50-dB distribution of speech envelope levels. Phoneme recognition was also obtained in ten CLARION implant users as a function of the input dynamic range from 10 to 80 dB in 10-dB steps. Acoustic amplitudes within a specified input dynamic range were logarithmically mapped into the 10–20-dB range of electric stimulation typically found in cochlear-implant users. Consistent with acoustic data, the perceptual data showed that a 50–60-dB input dynamic range produced optimal speech recognition in these implant users. The present results indicate that speech dynamic range is much greater than the commonly assumed 30-dB range. A new amplitude mapping strategy, based on envelope distribution differences between consonants and vowels, is proposed to optimize acoustic-to-electric mapping of speech sounds. This new strategy will use a logarithmic map for low-frequency channels and a more compressive map for high-frequency channels, and may improve overall speech recognition for cochlear-implant users.

1.
ANSI (1969). ANSI S3.5-1969, “American National Standards Methods for the Calculation of the Articulation Index” (American National Standards Institute, New York).
2.
ANSI (1997). ANSI S3.5-1997, “American National Standards Methods for the Calculation of the Speech Intelligibility Index” (American National Standards Institute, New York).
3.
Beranek
,
L. L.
(
1947
). “
The design of speech communication systems
,”
Proc. Inst. Radio Eng.
35
,
880
890
.
4.
Boex, C. S., Pelizzone, M., Piloux, V., and Montandon, P. (1995). “Use of loudness scaling measurements to determine compressive mapping in speech processing for cochlear implants,” Abstracts of 1995 Conference on Implantable Auditory Prostheses, p. 57.
5.
Boothroyd
,
A.
,
Erickson
,
F. N.
, and
Medwetsky
,
L.
(
1994
). “
The hearing aid input: A phonemic approach to assessing the spectral distribution of speech
,”
Ear Hear.
6
,
432
442
.
6.
Byrne
,
D.
,
Dillon
,
H.
,
Tran
,
K.
(
1994
). “
An international comparison of long-term average speech spectra
,”
J. Acoust. Soc. Am.
96
,
2108
2120
.
7.
Cox
,
R. M.
,
Matesich
,
J. S.
, and
Moore
,
J. N.
(
1988
). “
Distributions of short-term rms levels in conversational speech
,”
J. Acoust. Soc. Am.
84
,
1100
1104
.
8.
Dorman
,
M. F.
,
Smith
,
L.
,
Parkin
,
J. L.
(
1993
). “
Loudness balance between acoustic and electric stimulation by a patient with a multichannel cochlear implant
,”
Ear Hear.
14
(
4
),
290
292
.
9.
Dunn
,
H. K.
, and
White
,
S. D.
(
1940
). “
Statistical measurements on conversational speech
,”
J. Acoust. Soc. Am.
11
,
278
288
.
10.
Eddington
,
D. K.
,
Dobelle
,
W. H.
,
Brackmann
,
D. E.
,
Mladejovsky
,
D. E.
, and
Parkin
,
J. L.
(
1978
). “
Auditory prostheses research with multiple channel intracochlear stimulation in man
,”
Ann. Otol. Rhinol. Laryngol.
87
(Suppl 53),
5
39
.
11.
Eddington, D. (1999). “Speech Processors for Auditory Prostheses,” NIDCD Contract N01-DC-6-2100, Final Progress Report.
12.
Fletcher, H. (1953). Speech and Hearing in Communication (Van Nostrand, New York), pp. 69–88.
13.
Freyman
,
R. L.
,
Nerbonne
,
G. P.
, and
Cote
,
H. A.
(
1991
). “
Effect of consonant–vowel ratio modification on amplitude envelope cues for consonant recognition
,”
J. Speech Hear. Res.
34
,
415
426
.
14.
Fu
,
Q.-J.
(
2000
). “
Auditory temporal resolution and speech performance in cochlear implant users
,”
J. Acoust. Soc. Am.
108
,
2600
.
15.
Fu
,
Q.-J.
, and
Shannon
,
R. V.
(
1998
). “
Effects of amplitude nonlinearity on phoneme recognition by cochlear implant users and normal-hearing listeners
,”
J. Acoust. Soc. Am.
104
,
2570
2577
.
16.
Fu
,
Q.-J.
, and
Shannon
,
R. V.
(
1999
). “
Effect of acoustic dynamic range on phoneme recognition in quiet and noise by cochlear implant users
,”
J. Acoust. Soc. Am.
106
,
L65
70
.
17.
Hillenbrand
,
J.
,
Getty
,
L. A.
,
Clark
,
M. J.
, and
Wheeler
,
K.
(
1995
). “
Acoustic characteristics of American English vowels
,”
J. Acoust. Soc. Am.
97
,
3099
3111
.
18.
Kryter
,
K. D.
(
1962
). “
Methods for the calculation and use of the articulation index
,”
J. Acoust. Soc. Am.
34
,
1689
1697
.
19.
Loizou
,
P. C.
,
Dorman
,
M.
, and
Fitzke
,
J.
(
2000
). “
The effect of reduced dynamic range on speech understanding: Implications for patients with cochlear implants
,”
Ear Hear.
21
,
25
31
.
20.
Loizou
,
P. C.
,
Poroy
,
O.
, and
Dorman
,
M.
(
2000
). “
The effect of parametric variations of cochlear implant processors on speech understanding
,”
J. Acoust. Soc. Am.
108
,
790
802
.
21.
Nelson
,
D. A.
,
Schmitz
,
J. L.
,
Donaldson
,
G. S.
,
Viemeister
,
N. F.
, and
Javel
,
E.
(
1996
). “
Intensity discrimination as a function of stimulus level with electric stimulation
,”
J. Acoust. Soc. Am.
100
,
2393
2414
.
22.
Pavlovic, C. V. (1993). “Problems in the prediction of speech recognition performance of normal-hearing and hearing-impaired individuals,” in Acoustical Factors Affecting Hearing Aid Performance, edited by G. A. Studebaker and I. Hochberg, 2nd ed. (Allyn and Bacon, Boston), pp. 221–234.
23.
Robert, M. E. (1999). “CONDOR: Documentation for version 1.3©,” House Ear Institute, Los Angeles, CA.
24.
Shannon, R. V., Zeng, F.-G., and Wygonski, J. (1992). “Speech recognition using only temporal cues,” in The Auditory Processing of Speech: From Sounds to Words, edited by M. E. H. Schouten (Mouton de Gruyter, Berlin), pp. 263–274.
25.
Shannon
,
R. V.
,
Jensvold
,
A.
,
Padilla
,
M.
,
Robert
,
M. E.
, and
Wang
,
X.
(
1999
). “
Consonant recordings for speech testing
,”
J. Acoust. Soc. Am.
106
,
L71
74
.
26.
Skinner
,
M. W.
,
Holden
,
L. K.
,
Holden
,
T. A.
,
Demorest
,
M. E.
, and
Fourakis
,
M. S.
(
1997
). “
Speech recognition at simulated soft, conversational and raised-to-loud vocal efforts by adults with cochlear implants
,”
J. Acoust. Soc. Am.
101
,
3766
3782
.
27.
Souza
,
P. E.
, and
Turner
,
C. W.
(
1996
). “
Effect of single-channel compression on temporal speech information
,”
J. Speech Hear. Res.
39
,
901
911
.
28.
Stobich
,
B.
,
Zierhofer
,
C. M.
,
Hochmair
,
E. S.
(
1999
). “
Influence of automatic gain control parameter settings on speech understanding of cochlear implant users employing the continuous interleaved sampling strategy
,”
Ear Hear.
20
(
2
),
104
116
.
29.
Studebaker
,
G. A.
,
Sherbecoe
,
R. L.
,
McDaniel
,
D. M.
,
Gwaltney
,
C. A.
(
1999
). “
Monosyllabic word recognition at higher-than-normal speech and noise levels
,”
J. Acoust. Soc. Am.
105
,
2431
2444
.
30.
Turner
,
C. W.
,
Souza
,
P. E.
, and
Forget
,
L. N.
(
1995
). “
Use of temporal envelope cues in speech recognition by normal and hearing-impaired listeners
,”
J. Acoust. Soc. Am.
97
,
2568
2576
.
31.
Van Tasell
,
D. J.
, and
Trine
,
T. D.
(
1996
). “
Effects of single-band syllabic amplitude compression on temporal speech information in nonsense syllables and in sentences
,”
J. Speech Hear. Res.
39
,
912
922
.
32.
Wilson, B. S., Lawson, D. T., Zerbi, M., and Wolford, R. D. (1999). “Speech processors for auditory prostheses,” NIH Project NO1-DC-8-2105, Third Quarterly Progress Report.
33.
Zeng
,
F.-G.
, and
Galvin
,
J. J.
(
1999
). “
Amplitude compression and phoneme recognition in cochlear implant listeners
,”
Ear Hear.
20
,
60
74
.
34.
Zeng
,
F.-G.
,
Galvin
,
J. J.
, and
Zhang
,
C. Y.
(
1998
). “
Encoding loudness by electric stimulation of the auditory nerve
,”
NeuroReport
9
,
1845
1848
.
35.
Zeng
,
F.-G.
, and
Shannon
,
R. V.
(
1992
). “
Loudness balance between acoustically and electrically stimulated ears
,”
Hear. Res.
60
,
231
235
.
36.
Zeng
,
F.-G.
, and
Shannon
,
R. V.
(
1994
). “
Loudness-coding mechanisms inferred from electric stimulation of the human auditory system
,”
Science
264
,
564
566
.
37.
Zeng
,
F.-G.
, and
Shannon
,
R. V.
(
1995
). “
Loudness of simple and complex stimuli in electric hearing
,”
Ann. Otol. Rhinol. Laryngol.
104
(Suppl 166),
235
238
.
This content is only available via PDF.
You do not currently have access to this content.