Two competing views of regulating glottal airflow for maximum vocal output are investigated theoretically. The maximum power transfer theorem is used as a guide. A wide epilarynx tube (laryngeal vestibule) matches well with low glottal resistance (believed to correspond to the “yawn-sigh” approach in voice therapy), whereas a narrow epilarynx tube matches well with a higher glottal resistance (believed to correspond to the “twang-belt” approach). A simulation model is used to calculate mean flows, peak flows, and oral radiated pressure for an impedance ratio between the vocal tract (the load) and the glottis (the source). Results show that when the impedance ratio approaches 1.0, maximum power is transferred and radiated from the mouth. A full update of the equations used for simulating driving pressures, glottal flow, and vocal tract input pressures is provided as a programming guide for those interested in model development.

1.
Alipour
,
F.
,
Berry
,
D.
, and
Titze
,
I. R.
(
2000
). “
A finite-element model of vocal fold vibration
,”
J. Acoust. Soc. Am.
108
,
3003
3012
.
2.
Bestebreurtje
,
M. E.
, and
Schutte
,
H. K.
(
2000
). “
Resonance strategies for the belting style
,”
J. Voice
14
,
194
204
.
3.
Bouhuys
,
A.
,
Mead
,
J.
,
Proctor
,
D.
, and
Stevens
,
K.
(
1968
). “
Pressure-flow events during singing
,”
Ann. N.Y. Acad. Sci.
155
,
165
176
.
4.
Brown, O. L. (1996). Discover Your Voice (Singular Publishing, San Diego).
5.
Colton, R., and Casper, J. K. (1996). Understanding Voice Problems, 2nd ed. (Williams & Wilkins, Baltimore).
6.
Estill, J., Fujimura, O., Sawada, M., and Beechler, K. (1996). “Temporal perturbation and voice qualities,” in Vocal Fold Physiology: Controlling Complexity and Chaos, edited by P. J. Davis and N. H. Fletcher (Singular Publishing, San Diego), pp. 237–252.
7.
Flanagan, J. L. (1965). Speech Analysis, Synthesis, and Perception (Springer, New York).
8.
Holmberg
,
E.
,
Hillman
,
R.
, and
Perkell
,
J.
(
1988
). “
Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice
,”
J. Acoust. Soc. Am.
84
,
511
529
.
9.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced source sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
10.
Liljencrants, J. (1985). “Speech synthesis with a reflection-type line analog,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden.
11.
Liljencrants, J. (1991). “A translating and rotating mass model of the vocal folds,” STL Quarterly Progress and Status Report 1, Speech Transmission Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
12.
Linklater, K. (1976). Freeing the Natural Voice (Drama Book, New York).
13.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Van Hassel
,
R.
,
Wijnands
,
A.
, and
Auregan
,
V.
(
1994
). “
Theoretical and experimental study of quasi-steady flow separation within the glottis during phonation: Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
14.
Sondhi
,
M. M.
, and
Schroeter
,
J.
(
1987
). “
A hybrid time-frequency domain articulatory speech synthesizer
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
,
955
967
.
15.
Story, B. H. (1995). “Physiologically-based speech simulation using an enhanced wave-reflection model of the vocal tract,” Ph.D. dissertation, University of Iowa.
16.
Story
,
B.
, and
Titze
,
I.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
17.
Story
,
B. H.
,
Titze
,
I. R.
, and
Hoffman
,
E. A.
(
2001
). “
The relationship of vocal tract shape to three voice qualities
,”
J. Acoust. Soc. Am.
109
,
1651
1667
.
18.
Sullivan, J. (1985). The Phenomena of the Belt/pop Voice (Sullivan, Denver).
19.
Sundberg, J. (1987). The Science of the Singing Voice (Northern Illinois U.P., Dekalb).
20.
Sundberg
,
J.
,
Cleveland
,
T. F.
,
Stone
,
R. E.
, and
Iwarsson
,
J.
(
1999
). “
Voice source characteristics of six premier country singers
,”
J. Voice
13
,
168
183
.
21.
Titze
,
I. R.
(
1984
). “
Parametrization of glottal area, glottal flow, and vocal fold contact area
,”
J. Acoust. Soc. Am.
75
,
570
580
.
22.
Titze, I. R., and Story, B. H. (in press). “Rulse for controlling low-dimensional vocal fold models with muscle activities,” J. Acoust. Soc. Am.
23.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interaction of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
,
2234
2243
.
24.
Titze
,
I. R.
, and
Talkin
,
D.
(
1979
). “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
,
60
74
.
This content is only available via PDF.
You do not currently have access to this content.