Some published cochlear filterbanks are nonlinear but are fitted to animal basilar membrane (BM) responses. Others, like the gammatone, are based on human psychophysical data, but are linear. In this article, a human nonlinear filterbank is constructed by adapting a computational model of animal BM physiology to simulate human BM nonlinearity as measured by psychophysical pulsation-threshold experiments. The approach is based on a dual-resonance nonlinear type of filter whose basic structure was modeled using animal observations. In modeling the pulsation threshold data, the main assumption is that pulsation threshold occurs when the signal and the masker produce comparable excitation, that is the same filter output, at the place of the BM best tuned to the signal frequency. The filter is fitted at a discrete number of best frequencies (BFs) for which psychophysical data are available for a single listener and for an average response of six listeners. The filterbank is then created by linear regression of the resulting parameters to intermediate BFs. The strengths and limitations of the resulting filterbank are discussed. Its suitability for simulating hearing-impaired cochlear responses is also discussed.

1.
Abbas
,
P. J.
, and
Sachs
,
M. B.
(
1976
). “
Two-tone suppression in auditory-nerve fibers: Extension of stimulus response relationship
,”
J. Acoust. Soc. Am.
59
,
112
122
.
2.
Baker, R. J., Rosen, S., and Darling, A. M. (1998). “An efficient characterisation of human auditory filtering across level and frequency that is also physiologically reasonable,” in Psychophysical and Physiological Advances in Hearing, edited by A. R. Palmer, A. Rees, A. Q. Summerfield, and R. Meddis (Whurr, London), pp. 81–88.
3.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
4.
Duifhuis
,
H.
(
1980
). “
Level effects is psychophysical two-tone suppression
,”
J. Acoust. Soc. Am.
67
,
914
927
.
5.
Giguère
,
C.
, and
Woodland
,
P. C.
(
1994
). “
A computational model of the auditory periphery for speech and hearing research. I. Ascending path
,”
J. Acoust. Soc. Am.
95
,
331
342
.
6.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
7.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
2000
). “
Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise
,”
J. Acoust. Soc. Am.
108
,
2318
2328
.
8.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid wave form compression on the basilar membrane as multiple-band-pass-nonlinearity filtering
,”
Hear. Res.
49
,
39
60
.
9.
Goldstein
,
J. L.
(
1995
). “
Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: data and MBPNL model
,”
Hear. Res.
89
,
52
68
.
10.
Goode
,
R. L.
,
Killion
,
M.
,
Nakamura
,
K.
, and
Nishihara
,
S.
(
1994
). “
New knowledge about the function of the human middle ear: development of an improved analog model
,”
Am. J. Otol.
15
,
145
154
.
11.
Houtgast
,
T.
(
1972
). “
Psychophysical evidence for lateral inhibition in hearing
,”
J. Acoust. Soc. Am.
51
,
1885
1894
.
12.
Johnstone
,
B. M.
,
Patuzzi
,
R.
, and
Yates
,
G. K.
(
1986
). “
Basilar membrane measurements and the travelling wave
,”
Hear. Res.
22
,
147
153
.
13.
Kiang
,
N. Y. S.
,
Liberman
,
M.
,
Charles
,
S. W. F.
, and
Guinan
,
J. J.
(
1986
). “
Single unit clues to cochlear mechanisms
,”
Hear. Res.
22
,
171
182
.
14.
Kringlebotn
,
M.
, and
Gundersen
,
T.
(
1985
). “
Frequency characteristics of the middle ear
,”
J. Acoust. Soc. Am.
77
,
159
164
.
15.
Kulkarni
,
A.
, and
Colburn
,
H. S.
(
2000
). “
Variability in the characterization of the headphone transfer function
,”
J. Acoust. Soc. Am.
107
,
1071
1074
.
16.
Lopez-Poveda, E. A., O’Mard, L. P., and Meddis, R. (1998). “A revised computational inner-hair cell model,” in Psychophysical and Physiological Advances in Hearing, edited by A. R. Palmer, A. Rees, A. Q. Summerfield, and R. Meddis (Whurr, London), pp. 112–119.
17.
Lyon, R. F. (1982). “A computational model of filtering, detection, and compression in the cochlea,” IEEE Proceedings, pp. 1282–1285.
18.
McFadden
,
D.
, and
Yama
,
M. F.
(
1983
). “
Upward shifts in the masking pattern with increasing masker intensity
,”
J. Acoust. Soc. Am.
74
,
1185
1189
.
19.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
20.
Møller
,
H.
,
Hammershøl
,
D.
,
Jensen
,
C. B.
, and
Sørensen
,
M. F.
(
1995
). “
Transfer characteristics of headphones measured on human ears
,”
J. Audio Eng. Soc.
43
,
203
217
.
21.
Moore, B. C. J. (1998). Cochlear Hearing Loss (Whurr, London).
22.
Moore, B. C. J., and Glasberg, B. R. (1987). “Formulae describing frequency selectivity in the perception of loudness, pitch and time,” in Frequency Selectivity in Hearing, edited by B. C. J. Moore (Academic, London).
23.
Nelson
,
D. A.
, and
Schroder
,
A. C.
(
1999
). “
Forward masking recovery and peripheral compression in normal-hearing and cochlear-impaired ears
,”
J. Acoust. Soc. Am.
106
,
2176
2177
(A).
24.
Oxenham
,
A. J.
, and
Plack
,
J. C.
(
1997
). “
A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing
,”
J. Acoust. Soc. Am.
101
,
3666
3675
.
25.
Patterson, R, Robinson, K., Holdsworth, J., McKeown, Zhang, C., and Allerhand, M. (1992). “Complex sounds and auditory imaging,” in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, England), pp. 429–443.
26.
Plack
,
C. J.
, and
Oxenham
,
A. J.
(
2000
). “
Basilar-membrane nonlinearity estimated by pulsation threshold
,”
J. Acoust. Soc. Am.
107
,
501
507
.
27.
Pralong
,
D.
, and
Carlile
,
S.
(
1996
). “
The role of individualized headphone calibration for the generation of high fidelity virtual auditory space
,”
J. Acoust. Soc. Am.
100
,
3785
3793
.
28.
Rhode
,
W. S.
(
1971
). “
Observations of the vibration of the basilar membrane in squirrel monkey using the Mössbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
29.
Rhode
,
W. S.
, and
Cooper
,
N. P.
(
1996
). “
Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo
,”
Aud. Neurosci.
3
,
102
121
.
30.
Rhode
,
W. S.
, and
Recio
,
A.
(
2000
). “
Study of the mechanical motions in the basal region of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
107
,
3317
3332
.
31.
Robles
,
L.
,
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1986
). “
Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases
,”
J. Acoust. Soc. Am.
80
,
1364
1374
.
32.
Robles
,
L.
,
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1991
). “
Two-tone distortion in the basilar membrane of the cochlea
,”
Nature (London)
349
,
413
414
.
33.
Rosen
,
S.
,
Baker
,
R. J.
, and
Darling
,
A.
(
1998
). “
Auditory filter nonlinearity at 2KHz in normal hearing listeners
,”
J. Acoust. Soc. Am.
103
,
2539
2550
.
34.
Ruggero
,
M. A.
,
Rich
,
N. C.
, and
Recio
,
A.
(
1996
). “
The effect of intense acoustic stimulation on basilar membrane vibrations
,”
Aud. Neurosci.
2
,
329
345
.
35.
Ruggero
,
M. A.
,
Robles
,
L.
, and
Rich
,
N. C.
(
1992
). “
Two-tone suppression in the basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate suppression
,”
J. Neurophysiol.
68
,
1087
1099
.
36.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
Shyamla Narayan
,
S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
37.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Measurements of basilar membrane motion in the guinea pig using the Mössbauer technique
,”
J. Acoust. Soc. Am.
72
,
131
141
.
38.
Slaney, M. (1993). “An efficient implementation of the Patterson-Holdsworth auditory filter bank,” Apple Computer Technical Report #35, Apple Computer, Inc.
39.
Yates
,
G. K.
,
Winter
,
I. M.
, and
Robertson
,
D.
(
1990
). “
Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range
,”
Hear. Res.
45
,
203
220
.
This content is only available via PDF.
You do not currently have access to this content.