A diffuse acoustic field is shown to have correlations equal to the Green’s function of the body. Simple plausibility arguments for this assertion are followed by a more detailed proof. A careful version of the statement is found to include caveats in regard to how diffuse the field truly is, the spectrum of the diffuse field, and the phase of the receivers. Ultrasonic laboratory tests confirm the assertion. The main features of the direct signal between two transducers are indeed recovered by cross correlating their responses to a diffuse field generated by a third transducer. The quality of the recovery improves with increased averaging and the use of multiple sources. Applications are discussed.

1.
R.
Weaver
, “
On diffuse waves in solid media
,”
J. Acoust. Soc. Am.
71
,
1608
1609
(
1982
).
2.
R.
Weaver
, “
Diffuse elastic waves at a free surface
,”
J. Acoust. Soc. Am.
78
,
131
136
(
1985
).
3.
R.
Weaver
, “
Diffuse Waves in Finite Plates
,”
J. Sound Vib.
94
,
319
335
(
1984
).
4.
R.
Weaver
, “
Laboratory studies of diffuse waves in plates
,”
J. Acoust. Soc. Am.
79
,
919
923
(
1986
).
5.
J. A.
Turner
and
R. L.
Weaver
, “
Radiative transfer of ultrasound
,”
J. Acoust. Soc. Am.
96
,
3654
3674
(
1994
).
6.
M. J.
Evans
and
P.
Cawley
, “
Measurement and prediction of diffuse fields in structures
,”
J. Acoust. Soc. Am.
106
,
3348
3361
(
1999
).
7.
R. H. Lyon and R. G. DeJong, Theory and Application of Statistical Energy Analysis (Butterworths-Heimann, Boston, MA, 1995).
8.
E. H.
Dowell
and
Y.
Kubota
, “
Asymptotic modal analysis and SEA of dynamical systems
,”
J. Appl. Mech.
52
,
949
957
(
1985
).
9.
C. H.
Hodges
and
J.
Woodhouse
, “
Theories of noise and vibration transmission in complex structures
,”
Rep. Prog. Phys.
49
,
107
170
(
1986
).
10.
J.
Woodhouse
, “
An approach to the theoretical background of SEA applied to structural vibration
,”
J. Acoust. Soc. Am.
69
,
1695
1709
(
1981
).
11.
B. R.
Mace
and
P. J.
Shorter
, “
Energy flow models from Finite Element Analysis
,”
J. Sound Vib.
233
,
369
389
(
2000
).
12.
G. C.
Papanicolaou
,
L. V.
Ryzhik
, and
J. B.
Keller
, “
Stability of the P to S energy ratio in the diffusive regime
,”
Bull. Seismol. Soc. Am.
86
,
1107
(
1996
).
13.
J. A.
Turner
, “
Scattering and Diffusion of Seismic Waves
,”
Bull. Seismol. Soc. Am.
88
,
276
283
(
1998
).
14.
R.
Hennino
,
N.
Trégourès
,
N. M.
Shapiro
,
L.
Margerin
,
M.
Campillo
,
B. A.
van Tiggelen
, and
R. L.
Weaver
, “
Observation of equipartition of seismic waves in Mexico
,”
Phys. Rev. Lett.
86
,
3447
3450
(
2001
).
15.
R. L.
Weaver
and
O. I.
Lobkis
, “
Temperature Dependence of Diffuse Field Phase
,”
Ultrasonics
38
,
491
494
(
2000
).
16.
R. Weaver and O. Lobkis, “Temperature dependence of ultrasonic diffuse fields, implications for the measurement of stress,” in Review of Progress in Quantitative Nondestructive Testing, edited by D. O. Thompson and D. E. Chimenti (AIP Press, 2001), pp. 1480–1486.
17.
A.
Derode
,
P.
Roux
, and
M.
Fink
, “
Robust acoustic time-reversal with high-order multiple scattering
,”
Phys. Rev. Lett.
75
,
4206
4209
(
1995
).
18.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Limits of time-reversal focusing through multiple-scattering: long range correlation
,”
J. Acoust. Soc. Am.
107
,
2987
2998
(
2000
).
19.
C.
Draeger
,
J-C.
Aime
, and
M.
Fink
, “
One-channel time reversal in chaotic cavities: experimental results
,”
J. Acoust. Soc. Am.
105
,
618
625
(
1999
).
20.
C.
Draeger
and
M.
Fink
, “
One-channel time reversal in chaotic cavities: Theoretical limits
,”
J. Acoust. Soc. Am.
105
,
611
617
(
1995
).
21.
V. N.
Prigodin
,
B. L.
Altshuler
,
K. B.
Efetov
, and
S.
Iida
, “
Mesoscopic dynamical echo in quantum dots
,”
Phys. Rev. Lett.
72
,
546
549
(
1994
).
22.
R.
Weaver
and
J.
Burkhardt
, “
Weak Anderson localization and enhanced backscatter in reverberation rooms and quantum dots
,”
J. Acoust. Soc. Am.
96
,
3186
3190
(
1994
).
23.
R. L.
Weaver
and
O. I.
Lobkis
, “
Enhanced Backscattering and Modal Echo of Reverberant Elastic Waves
,”
Phys. Rev. Lett.
84
,
4942
4945
(
2000
);
J.
de Rosny
,
A.
Tourin
, and
M.
Fink
, “
Coherent backscattering of an elastic wave in a chaotic cavity
,”
Phys. Rev. Lett.
84
,
1693
1696
(
2000
).
24.
R. L.
Weaver
, “
Equipartition and mean square responses in large undamped structures
,”
J. Acoust. Soc. Am.
110
,
894
903
(
2001
).
25.
R.
Weaver
, “
On the time and geometry independence of elastodynamic spectral energy density
,”
J. Acoust. Soc. Am.
80
,
1539
1541
(
1986
).
26.
E. J. Heller, “Qualitative properties of eigenfunctions of classically chaotic Hamiltonian systems,” in Quantum Chaos and Statistical Nuclear Physics, edited by T. H. Seligman and H. Nishioka (Springer Verlag, New York, 1986).
27.
R. L.
Weaver
and
O. I.
Lobkis
, “
Ultrasonics without a source, Thermal fluctuation correlations at MHz frequencies
,”
Phys. Rev. Lett.
87
,
134301
(
2001
);
O. Lobkis and R. Weaver, “Elastic wave thermal fluctuations, ultrasonic waveforms by correlation of thermal phonons,” under review, J. Acoust. Soc. Am.
28.
O. Bohigas, “Random matrix theories and chaotic dynamics,” in Les Houches, session LII, 1989, in Chaos and Quantum Physics (Elsevier, Amsterdam, 1991).
29.
E.
Bogomolny
and
E.
Hugues
, “
Semiclassical theory of flexural vibrations of plates
,”
Phys. Rev. E
57
,
5404
5424
(
1998
).
30.
H-J. Stockmann, Quantum Chaos: An Introduction (Cambridge U.P., Cambridge, 1999).
This content is only available via PDF.
You do not currently have access to this content.