A new technique to experimentally determine the electrostrictive coefficients of thin polymer films is presented. This technique is a second-order extension of the first-order quasistatic method for the measurement of piezoelectric coefficients previously introduced by Guillot and Jarzynski [J. Acoust. Soc. Am. 108, 600–607 (2000)]. In the present method, electrically induced strains are measured optically on a rubber-encapsulated sample. These strains are used in a Rayleigh–Ritz procedure that minimizes the total energy of the sample and whose output is a set of three tensile electrostrictive coefficients. The total energy of the sample includes elastic contributions from the polymer and the encapsulating rubber as well as two quadratic electromechanical terms corresponding to Maxwell stress and to electrostriction. Therefore, the external electrostatic effects can be separated from the intrinsic electrostrictive behavior, and the measured coefficients are true material properties. Data obtained on two types of polyurethanes submitted to a bias field of approximately 4 MV/m at 2 kHz and at room temperature are presented. It was found that these materials possess very large electrostrictive coefficients and that the Maxwell stress effect is responsible for less than 13% of their total electromechanical behavior.

1.
M.
Zhenyi
,
J. I.
Scheinbeim
,
J. W.
Lee
, and
B. A.
Newman
, “
High Field Electrostrictive Response of Polymers
,”
J. Polym. Sci. Part B: Polym. Phys.
32
,
2721
2731
(
1994
).
2.
J. E.
Barger
, “
Electrostrictive polyurethane projector
,”
J. Acoust. Soc. Am.
95
,
2857
(A) (
1994
).
3.
R.
Heydt
,
R.
Pelrine
,
J.
Joseph
,
J.
Eckerle
, and
R.
Kornbluh
, “
Acoustical performance of an electrostrictive polymer film loudspeaker
,”
J. Acoust. Soc. Am.
107
,
833
839
(
2000
).
4.
J.
Kyokane
,
H.
Ishimoto
,
H.
Yugen
,
T.
Hirai
,
T.
Ueda
, and
K.
Yoshino
, “
Electrostriction Effect of Polyurethane Elastomer (PUE) and its Application to Actuators
,”
Synth. Met.
103
(
1–3
),
2366
2367
(
1999
).
5.
R. E.
Pelrine
,
R. D.
Kornbluh
, and
J. P.
Joseph
, “
Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators A
64
,
77
85
(
1998
).
6.
E. Balizer, “Polyurethane Electrostriction Morphology Dependence,” Internal Funding Proposal, Naval Surface Warfare Center, Carderock Division (1995).
7.
J. E.
Martin
and
R. A.
Anderson
, “
Electrostriction in field-structure composites: Basis for a fast artificial muscle?
J. Chem. Phys.
111
(
9
),
4273
4280
(
1999
).
8.
Y.
Sun
,
W. W.
Cao
, and
L. E.
Cross
, “
Electrostriction Effect in Glass
,”
Mater. Lett.
4
(
8, 9
),
329
336
(
1986
).
9.
Y.
Sun
,
W. W.
Cao
,
W. Y.
Pan
,
Z. P.
Chang
, and
L. E.
Cross
, “
Complete Determination of Electrostriction Tensor Components of KMnF3 Single Crystals at Room Temperature
,”
J. Mater. Sci. Lett.
7
(
4
),
327
330
(
1988
).
10.
K.
Rittenmyer
,
A. S.
Bhalla
, and
L. E.
Cross
, “
Electrostriction in Fluoride Perovskites
,”
Mater. Lett.
7
(
11
),
380
384
(
1989
).
11.
H. Wang, “Electromechanical Effects in Polymeric Materials,” Ph.D. dissertation, Pennsylvania State University, 1994, pp. 146–159.
12.
Q. M.
Zhang
,
J.
Su
,
C. H.
Kim
,
R.
Ting
, and
R.
Capps
, “
An experimental investigation of electromechanical responses in polyurethane elastomer
,”
J. Appl. Phys.
81
(
6
),
2770
2776
(
1997
).
13.
Y. M.
Shkel
and
D. J.
Klingenberg
, “
Electrostriction of polarizable materials: Comparison of models with experimental data
,”
J. Appl. Phys.
83
(
12
),
7834
7843
(
1998
).
14.
S.
Eury
,
R.
Yimnirun
,
V.
Sundar
,
P. J.
Moses
,
S. J.
Jang
, and
R. E.
Newnham
, “
Converse Electrostriction in Polymers and Composites
,”
Mater. Chem. Phys.
61
,
18
23
(
1999
).
15.
J.
Su
,
Q. M.
Zhang
, and
R. Y.
Ting
, “
Space-charge-enhanced electromechanical response in thin-film polyurethane elastomers
,”
Appl. Phys. Lett.
71
(
3
),
386
388
(
1997
).
16.
F. M.
Guillot
,
J.
Jarzynski
, and
E.
Balizer
, “
Electromechanical response of polymer films by laser Doppler vibrometry
,”
J. Acoust. Soc. Am.
103
,
1421
1427
(
1998
).
17.
F. M.
Guillot
and
J.
Jarzynski
, “
A new method for the absolute measurement of piezoelectric coefficients on thin polymer films
,”
J. Acoust. Soc. Am.
108
,
600
607
(
2000
).
18.
W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, New York, 1950), pp. 296–304.
19.
L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, New York, 1984), pp. 64–66.
20.
W. K. H. Ponofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley, Reading, MA, 1962), p. 104.
21.
W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, New York, 1950), p. 34.
22.
T. Mitsui, I. Tatsuzaki, and E. Nakamura, An Introduction to the Physics of Ferroelectrics (Gordon and Breach Science, London, 1976), pp. 29–42.
23.
L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986), pp. 14–15.
24.
H. L. Anderson, A Physicist’s Desk Reference, 2nd ed. (Springer-Verlag, New York, 1989), p. 216.
25.
C. E. Harper, Handbook of Plastics and Elastomers (McGraw-Hill, New York, 1975), pp. 61–62.
This content is only available via PDF.
You do not currently have access to this content.