Distortion-product otoacoustic emissions (DPOAEs) elicited with stimulus frequencies less than or equal to 8 kHz have been used in hearing clinics to assess whether the middle ear and cochlea are normal, but high-frequency hearing (>4 kHz) is most vulnerable to cochlear pathology. It might prove useful to measure DPOAEs with even higher frequency stimuli (>8 kHz), but there have been few reports of such studies in humans. DPOAEs have been measured in other mammals to the upper range of hearing sensitivity. The purpose of this study was to compare some characteristics of DPOAEs in human subjects elicited with high-frequency stimuli with those that have been extensively measured with lower-frequency stimuli. The primary goal was to establish if the same phenomenon responsible for the behavior of low-frequency DPOAEs is responsible for the behavior of high-frequency DPOAEs. Specifically, the DPOAE level with stimuli varied from 2 to 20 kHz, growth functions of DPOAEs, effects of varying the primary frequency ratio (f2/f1) on the DPOAE level, and DPOAE group delay were determined. Because the behaviors appeared to vary smoothly with stimulus frequency, the study suggests that emissions measured from 2 to 20 kHz were the product of the same biological process.

1.
Abdala
,
C.
(
1996
). “
Distortion product otoacoustic emission (2f1–f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates
,”
J. Acoust. Soc. Am.
100
,
3726
3740
.
2.
ANSI (1996). ANSI S3.6-1996, “Specifications for audiometers” (American National Standards Institute, New York).
3.
Blalock, H. M. (1972). Social Statistics, 2nd ed. (McGraw-Hill, New York).
4.
Bowman
,
D. M.
,
Brown
,
D. K.
,
Eggermont
,
J. J.
, and
Kimberley
,
B. P.
(
1997
). “
The effect of sound intensity on f1-sweep and f2-sweep distortion product otoacoustic emissions phase delay estimates in human adults
,”
J. Acoust. Soc. Am.
101
,
1550
1559
.
5.
Bowman
,
D. M.
,
Brown
,
D. K.
, and
Kimberley
,
B. P.
(
2000
). “
An examination of gender differences in DPOAE phase delay measurements in normal-hearing adults
,”
Hear. Res.
142
,
1
11
.
6.
Brass
,
D.
, and
Locke
,
A.
(
1997
). “
The effect of the evanescent wave upon acoustic measurements in the human ear canal
,”
J. Acoust. Soc. Am.
101
,
2164
2175
.
7.
Brown
,
A. M.
(
1987
). “
Acoustic distortion from rodent ears: A comparison of responses from rats, guinea pigs, and gerbils
,”
Hear. Res.
31
,
25
38
.
8.
Brown
,
A. M.
, and
Gaskill
,
S. A.
(
1990
). “
Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses
,”
J. Acoust. Soc. Am.
88
,
840
849
.
9.
Brown
,
A. M.
,
McDowell
,
B.
, and
Forge
,
A.
(
1989
). “
Effects of chronic gentamicin treatment on hair cells can be monitored using acoustic distortion products
,”
Hear. Res.
42
,
143
156
.
10.
Chan
,
C. K.
,
Musicant
,
A. D.
, and
Hind
,
J. E.
(
1993
). “
An insert earphone system for delivery of spectrally shaped signals for physiological studies
,”
J. Acoust. Soc. Am.
93
,
1496
1501
.
11.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1997
). “
Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea
,”
J. Neurophysiol.
78
,
261
270
.
12.
Dallos
,
P.
, and
Evans
,
B. N.
(
1995a
). “
High-frequency motility of outer hair cells and the cochlear amplifier
,”
Science
267
,
2006
2009
.
13.
Dallos
,
P.
, and
Evans
,
B. N.
(
1995b
). “
High-frequency outer hair cell motility: Corrections and addendum
,”
Science
268
,
1420
1421
.
14.
Dallos
,
P.
, and
Harris
,
D.
(
1978
). “
Properties of auditory nerve responses in absence of outer hair cells
,”
J. Neurophysiol.
41
,
365
383
.
15.
Dorn
,
P. A.
,
Konrad-Martin
,
D.
,
Neely
,
S. T.
,
Keefe
,
D. H.
,
Cyr
,
E.
, and
Gorga
,
M. P.
(
2001
). “
DPOAE input/output functions in normal and impaired human ears
,”
Assoc. Res. Otolar. Abstracts
24
,
8
.
16.
Dreisbach
,
L. E.
, and
Siegel
,
J. H.
(
1995
). “
The effect of ear canal acoustics on high frequency distortion-product otoacoustic emission group delay measurements
,”
International Evoked Response Audiometry Study Group Abstracts
14
,
17
.
17.
Eggermont
,
J. J.
,
Brown
,
D. K.
,
Ponton
,
C. W.
, and
Kimberley
,
B. P.
(
1996
). “
Comparison of distortion product otoacoustic emission (DPOAE) and auditory brain stem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation
,”
Ear Hear.
17
,
386
394
.
18.
Evans
,
E. F.
(
1972
). “
The frequency response and other properties of single fibres in the guinea-pig cochlear nerve.
J. Physiology
226
,
263
87
.
19.
Frank
,
T.
, and
Dreisbach
,
L. E.
(
1991
). “
Repeatability of high-frequency thresholds
,”
Ear Hear.
12
,
294
295
.
20.
Frank
,
G.
, and
Kössl
,
M.
(
1995
). “
The shape of 2 f1–f2 suppression tuning curves reflects basilar membrane specializations in the mustached bat, Pteronotus parnellii
,”
Hear. Res.
83
,
151
160
.
21.
Gaskill
,
S. A.
, and
Brown
,
A. M.
(
1990
). “
The behavior of the acoustic distortion product, 2 f1–f2, from the human ear and its relation to auditory sensitivity
,”
J. Acoust. Soc. Am.
88
,
821
839
.
22.
Goldstein
,
J. L.
(
1967
). “
Auditory nonlinearity
,”
J. Acoust. Soc. Am.
41
,
676
689
.
23.
Harris
,
F. P.
,
Lonsbury-Martin
,
B. L.
,
Stagner
,
B. B.
,
Coats
,
A. C.
, and
Martin
,
G. K.
(
1989
). “
Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio
,”
J. Acoust. Soc. Am.
85
,
220
229
.
24.
Harris, F. P., and Probst, R. (1990). “Growth functions of tone burst evoked and distortion-product otoacoustic emissions in humans,” in Mechanics and Biophysics of Hearing, edited by P. Dallos, C. D. Geisler, J. W. Matthews, M. A. Ruggero, and C. R. Steele (Springer, New York), pp. 178–185.
25.
Hauser
,
R.
, and
Probst
,
R.
(
1991
). “
The influence of systematic primary-tone level variation L2–L1 on the acoustic distortion product emission 2 f1–f2 in normal human ears
,”
J. Acoust. Soc. Am.
89
,
280
286
.
26.
Kemp
,
D. T.
(
1978
). “
Stimulated acoustic emissions from within the human auditory system
,”
J. Acoust. Soc. Am.
64
,
1386
1391
.
27.
Kemp, D. T., and Brown, A. M. (1983). “An integrated view of cochlear mechanical nonlinearities observable from the ear canal” in Mechanics of Hearing, edited by E. de Boer and M. A. Viergever (Delft University Press, Delft, The Netherlands), pp. 75–82.
28.
Khanna
,
S. M.
, and
Leonard
,
D. G. B.
(
1986
). “
Relationship between basilar membrane tuning and hair cell condition
,”
Hear. Res.
23
,
55
70
.
29.
Kiang
,
N. Y.
, and
Moxon
,
E. C.
(
1974
). “
Tails of tuning curves of auditory-nerve fibers.
J. Acoust. Soc. Am.
55
,
620
630
.
30.
Kim
,
D. O.
(
1980
). “
Cochlear mechanics: Implications of electrophysiological and acoustical observations
,”
Hear. Res.
2
,
297
317
.
31.
Kim
,
D. O.
,
Molnar
,
C. E.
, and
Matthews
,
J. W.
(
1980
). “
Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure
,”
J. Acoust. Soc. Am.
67
,
1704
1721
.
32.
Kimberley
,
B. P.
,
Brown
,
D. K.
, and
Eggermont
,
J. J.
(
1993
). “
Measuring human cochlear traveling wave delay using distortion product emission phase responses
,”
J. Acoust. Soc. Am.
94
,
1343
1350
.
33.
Kössl
,
M.
(
1994
). “
Otoacoustic emissions from the cochlea of the ‘constant frequency’ bats, Pteronotus parnelli and Rhinolophus rouxi
,”
Hear. Res.
72
,
59
72
.
34.
Liberman
,
M. C.
, and
Dodds
,
L. W.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves
,”
Hear. Res.
16
,
55
74
.
35.
Lonsbury-Martin
,
B. L.
,
Martin
,
G. K.
,
Probst
,
R.
, and
Coats
,
A. C.
(
1987
). “
Acoustic distortion products in rabbit ear canal. I. Basic features and physiological vulnerability
,”
Hear. Res.
28
,
173
189
.
36.
Martin
,
P.
,
Mehta
,
A. D.
, and
Hudspeth
,
A. J.
(
2000
). “
Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
12026
12031
.
37.
Moulin
,
A.
, and
Kemp
,
D. T.
(
1996
). “
Multicomponent acoustic distortion product otoacoustic emission phase in humans. I. General characteristics
,”
J. Acoust. Soc. Am.
100
,
1617
1639
.
38.
Neely, S. T., and Liu, Z. (1993). “EMAV: Otoacoustic emission averager,” Tech Memo No. 17 (Boys Town National Research Hospital, Omaha).
39.
Nelson
,
D. A.
, and
Kimberley
,
B. P.
(
1992
). “
Distortion-product emissions and auditory sensitivity in human ears with normal hearing and cochlear hearing loss
,”
J. Speech Hear. Res.
35
,
1142
1159
.
40.
Nelson
,
D. A.
, and
Zhou
,
J. Z.
(
1996
). “
Slopes of distortion-product otoacoustic emission growth curves corrected for noise-floor levels
,”
J. Acoust. Soc. Am.
99
,
468
474
.
41.
O Mahoney
,
C. F.
, and
Kemp
,
D. T.
(
1995
). “
Distortion product otoacoustic emission delay measurement in human ears
,”
J. Acoust. Soc. Am.
97
,
3721
3735
.
42.
Ohlemiller
,
K. K.
, and
Siegel
,
J. H.
(
1994
). “
Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers
,”
Hear. Res.
80
,
174
190
.
43.
Patuzzi
,
R.
, and
Robertson
,
D.
(
1988
). “
Tuning in the mammalian cochlea
,”
Physiological Review
68
,
1009
1082
.
44.
Plomp
,
R.
(
1965
). “
Detectability threshold for combination tones
,”
J. Acoust. Soc. Am.
37
,
1110
1123
.
45.
Popelka
,
G. R.
,
Osterhammel
,
P. A.
,
Nielsen
,
L. H.
, and
Rasmussen
,
A. N.
(
1993
). “
Growth of distortion product otoacoustic emissions with primary-tone level in humans.
Hear. Res.
71
,
12
22
.
46.
Rhode
,
W. S.
, and
Cooper
,
N. P.
(
1993
). “
Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae
,”
Hear. Res.
66
,
31
45
.
47.
Robles
,
L.
,
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1997
). “
Two-tone distortion on the basilar membrane of the chinchilla cochlea
,”
J. Neurophysiol.
77
,
2385
2399
.
48.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1991
). “
Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane
,”
J. Neurosci.
11
,
1057
1067
.
49.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
50.
Shannon
,
R. V.
, and
Houtgast
,
T.
(
1980
). “
Psychophysical measurements relating suppression and combination tones
,”
J. Acoust. Soc. Am.
68
,
825
829
.
51.
Shera
,
C. A.
,
Talmadge
,
C. L.
, and
Tubis
,
A.
(
2000
). “
Interrelations among distortion-product phase-gradient delays: Their connection to scaling symmetry and its breaking
,”
J. Acoust. Soc. Am.
108
,
2933
2948
.
52.
Siegel, J. H. (2002). “Calibrating otoacoustic emission probes,” in Otoacoustic Emissions: Clinical Applications, 2nd ed., edited by M. S. Robinette and T. J. Glattke (Thieme, New York), pp. 416–441.
53.
Siegel
,
J. H.
(
1994
). “
Ear-canal standing waves and high-frequency sound calibration using otoacoustic emission probes
,”
J. Acoust. Soc. Am.
95
,
2589
2597
.
54.
Siegel
,
J. H.
, and
Dreisbach
,
L. E.
(
1995
). “
Optical placement of a probe tube in the occluded human ear canal
,”
Assoc. Res. Otolar. Abstracts
18
,
119
.
55.
Siegel
,
J. H.
, and
Hirohata
,
E. T.
(
1994a
). “
Sound calibration and distortion product otoacoustic emissions at high frequencies
,”
Hear. Res.
80
,
146
152
.
56.
Siegel
,
J. H.
, and
Hirohata
,
E. T.
(
1994b
). “
Ultra-high-frequency distortion-product emissions and thresholds in humans
,”
Assoc. Res. Otolar. Abstracts
17
,
55
.
57.
Smoorenburg
,
G. F.
(
1972
). “
Combination tones and their origin
,”
J. Acoust. Soc. Am.
52
,
615
632
.
58.
Stinson
,
M. R.
(
1985
). “
The spatial distribution of sound pressure within scaled replicas of the human ear canal
,”
J. Acoust. Soc. Am.
78
,
1596
1602
.
59.
Stover
,
L. J.
,
Gorga
,
M. P.
,
Neely
,
S. T.
, and
Montoya
,
D.
(
1996
). “
Toward optimizing the clinical utility of distortion product otoacoustic emission measurements
,”
J. Acoust. Soc. Am.
100
,
956
967
.
60.
Stover
,
L. J.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
1994
). “
Explorations of the ‘filter’ of distortion product otoacoustic emissions
,”
Assoc. Res. Otolar. Abstracts
17
,
54
.
61.
Stover
,
L. J.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
1996
). “
Latency and multiple sources of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
99
,
1016
1024
.
62.
Stover
,
L. J.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
1999
). “
Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears
,”
J. Acoust. Soc. Am.
106
,
2669
2678
.
63.
Stover
,
L. J.
, and
Norton
,
S. J.
(
1993
). “
The effects of aging on otoacoustic emissions
,”
J. Acoust. Soc. Am.
94
,
2670
2681
.
64.
Whitehead, M. L., Lonsbury-Martin, B. L., and Martin, G. K. (1990). “Actively and passively generated acoustic distortion at 2 f1–f2 in rabbits,” in Mechanics and Biophysics of Hearing, edited by P. Dallos, C. D. Geisler, J. W. Matthews, M. A. Ruggero, and C. R. Steele (Springer, New York), pp. 243–250.
65.
Whitehead
,
M. L.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1992
). “
Evidence for two discrete sources of 2 f1–f2 distortion-product otoacoustic emission in rabbit. I. Differential dependence on stimulus parameters
,”
J. Acoust. Soc. Am.
91
,
1587
1607
.
66.
Whitehead
,
M. L.
,
McCoy
,
M. J.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1995
). “
Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1,
J. Acoust. Soc. Am.
97
,
2346
2358
.
67.
Whitehead
,
M. L.
,
Stagner
,
B. B.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1994
). “
Comparison of the onset latency and group latency of distortion-product otoacoustic emissions in human ears
,”
Assoc. Res. Otolar. Abstracts
17
,
46
.
68.
Whitehead
,
M. L.
,
Stagner
,
B. B.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1995
). “
Effects of ear-canal standing waves on measurements of distortion-product otoacoustic emissions
,”
J. Acoust. Soc. Am.
98
,
3200
3214
.
69.
Whitehead
,
M. L.
,
Stagner
,
B. B.
,
Martin
,
G. K.
, and
Lonsbury-Martin
,
B. L.
(
1996
). “
Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency
,”
J. Acoust. Soc. Am.
100
,
1663
1679
.
70.
Wiederhold, M. L., Mahoney, J. W., and Kellogg, D. L. (1986). “Acoustic overstimulation reduces 2 f1–f2 cochlear emissions at all levels in the cat,” in Peripheral Auditory Mechanisms, edited by J. B. Allen, J. L. Hall, A. Hubbard, S. T. Neely, and A. Tubis (Springer, New York), pp. 322–329.
71.
Wilson, J. P. (1980). “The combination tone, 2 f1–f2, in psychophysics and ear-canal recording,” in Psychophysical, Physiological and Behavioral Studies in Hearing, edited by G. van den Brink and F. A. Bilsen (Delft University Press, Delft, The Netherlands), pp. 43–52.
72.
Zwicker
,
E.
(
1981
). “
Dependence of level and phase of the (2 f1–f2)-cancellation tone on frequency range, frequency difference, level of primaries, and subject
,”
J. Acoust. Soc. Am.
70
,
1277
1288
.
This content is only available via PDF.
You do not currently have access to this content.