The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the “near-miss” to Weber’s law at low frequencies and the high-frequency “mid-level bump.” Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.

1.
Anderson
,
D.J.
,
Rose
,
J.E.
,
Hind
,
J.E.
, and
Brugge
,
J.F.
(
1971
). “
Temporal position of discharges in single auditory nerve fibers within the cycle of a sinewave stimulus: Frequency and intensity effects
,”
J. Acoust. Soc. Am.
49
,
1131
1139
.
2.
Blackburn
,
C.C.
, and
Sachs
,
M.B.
(
1990
). “
The representations of the steady-state vowel sound /ɛ/ in the discharge patterns of cat anteroventral cochlear nucleus neurons
,”
J. Neurophysiol.
63
,
1191
1212
.
3.
Braida, L.D., and Durlach, N.I. (1988). “Peripheral and central factors in intensity perception,” in Auditory Function: Neurobiological Bases of Hearing, edited by G.M. Edelman, W.E. Gall, and W.M. Cowan (Wiley, New York), pp. 559–583.
4.
Carlyon
,
R.P.
, and
Moore
,
B.C.J.
(
1984
). “
Intensity discrimination: A severe departure from Weber’s law
,”
J. Acoust. Soc. Am.
76
,
1369
1376
.
5.
Carney
,
L.H.
(
1990
). “
Sensitivities of cells in the anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents
,”
J. Neurophysiol.
64
,
437
456
.
6.
Carney
,
L.H.
(
1994
). “
Spatiotemporal encoding of sound level: Models for normal encoding and recruitment of loudness
,”
Hear. Res.
76
,
31
44
.
7.
Carney, L.H., Heinz, M.G., and Colburn, H.S. (1999). “Spatiotemporal coding of sound level: Quantifying the information provided by level-dependent phase cues,” Abstracts of the 22nd Midwinter Meeting of the Association for Research in Otolaryngology, pp. 212–213.
8.
Cheatham
,
M.A.
, and
Dallos
,
P.
(
1998
). “
The level dependence of response phase: Observations from cochlear hair cells
,”
J. Acoust. Soc. Am.
104
,
356
369
.
9.
Colburn, H.S. (1969). Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
10.
Colburn
,
H.S.
(
1973
). “
Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination
,”
J. Acoust. Soc. Am.
54
,
1458
1470
.
11.
Colburn
,
H.S.
(
1977a
). “
Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise
,”
J. Acoust. Soc. Am.
61
,
525
533
.
12.
Colburn, H.S. (1977b). “Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. Supplementary material,” AIP Document No. PAPS JASMA-61-525-98.
13.
Colburn, H.S. (1981). “Intensity perception: relation of intensity discrimination to auditory-nerve firing patterns,” Internal Memorandum, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA.
14.
Colburn, H.S. (1996). “Computational models of binaural processing,” in Auditory Computation, edited by H.L. Hawkins, T.A. McMullen, A.N. Popper, and R.R. Fay (Springer-Verlag, New York), pp. 332–400.
15.
Cooper
,
N.P.
, and
Rhode
,
W.S.
(
1997
). “
Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea
,”
J. Neurophysiol.
78
,
261
270
.
16.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996
). “
A quantitative model of the ’effective’ signal processing in the auditory system I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
17.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
18.
Delgutte, B. (1987). “Peripheral auditory processing of speech information: implications from a physiological study of intensity discrimination,” in The Psychophysics of Speech Perception, edited by M.E.H. Schouten (Nijhoff, Dordrecht, The Netherlands), pp. 333–353.
19.
Delgutte
,
B.
(
1990
). “
Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level
,”
Hear. Res.
49
,
225
246
.
20.
Delgutte, B. (1996). “Physiological models for basic auditory percepts,” in Auditory Computation, edited by H.L. Hawkins, T.A. McMullen, A.N. Popper, and R.R. Fay (Springer-Verlag, New York), pp. 157–220.
21.
Durlach
,
N.I.
, and
Braida
,
L.D.
(
1969
). “
Intensity perception I: Preliminary theory of intensity resolution
,”
J. Acoust. Soc. Am.
46
,
372
383
.
22.
Evans, E.F. (1981). “The dynamic range problem: Place and time coding at the level of cochlear nerve and nucleus,” in Neuronal Mechanisms of Hearing, edited by J. Syka and L. Aitkin (Plenum, New York), pp. 69–85.
23.
Fekete
,
D.M.
,
Rouiller
,
E.M.
,
Liberman
,
M.C.
, and
Ryugo
,
D.K.
(
1984
). “
The central projections of intracellularly labeled auditory nerve fibers in cats
,”
J. Comp. Neurol.
229
,
432
450
.
24.
Florentine
,
M.
, and
Buus
,
S.
(
1981
). “
An excitation pattern model for intensity discrimination
,”
J. Acoust. Soc. Am.
70
,
1646
1654
.
25.
Florentine
,
M.
,
Buus
,
S.
, and
Mason
,
C.R.
(
1987
). “
Level discrimination as a function of level for tones from 0.25 to 16 kHz
,”
J. Acoust. Soc. Am.
81
,
1528
1541
.
26.
Florentine
,
M.
,
Reed
,
C.M.
,
Rabinowitz
,
W.M.
,
Braida
,
L.D.
,
Durlach
,
N.I.
, and
Buus
,
S.
(
1993
). “
Intensity perception. XIV. Intensity discrimination in listeners with sensorineural hearing loss
,”
J. Acoust. Soc. Am.
94
,
2575
2586
.
27.
Geisler
,
C.D.
, and
Rhode
,
W.S.
(
1982
). “
The phases of basilar-membrane vibrations
,”
J. Acoust. Soc. Am.
71
,
1201
1203
.
28.
Goldberg
,
J.M.
, and
Brown
,
P.B.
(
1969
). “
Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization
,”
J. Neurophysiol.
32
,
613
636
.
29.
Green, D.M. and Swets, J.A. (1966). Signal Detection Theory and Psychophysics (Wiley, New York, reprinted 1988 by Peninsula, Los Altos, CA).
30.
Greenwood
,
D.D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
31.
Gresham
,
L.C.
, and
Collins
,
L.M.
(
1998
). “
Analysis of the performance of a model-based optimal auditory signal processor
,”
J. Acoust. Soc. Am.
103
,
2520
2529
.
32.
Guinan, J.J., Jr. (1996). “Physiology of olivocochlear efferents,” in The Cochlea, edited by P.J. Dallos, A.N. Popper, and R.R. Fay (Springer-Verlag, New York), pp. 435–502.
33.
Heinz, M.G. (2000). Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
34.
Heinz
,
M.G.
,
Colburn
,
H.S.
, and
Carney
,
L.H.
(
2001a
). “
Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve
,”
Neural Computation
13
,
2273
2316
.
35.
Heinz
,
M.G.
,
Colburn
,
H.S.
, and
Carney
,
L.H.
(
2001b
). “
Evaluating auditory performance limits: II. One-parameter discrimination with random level variation
,”
Neural Computation
13
,
2317
2339
.
36.
Hicks
,
M.L.
, and
Bacon
,
S.P.
(
1999
). “
Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing
,”
J. Acoust. Soc. Am.
105
,
326
338
.
37.
Huettel
,
L.G.
, and
Collins
,
L.M.
(
1999
). “
Using computational auditory models to predict simultaneous masking data: Model comparison
,”
IEEE Trans. Biomed. Eng.
46
,
1432
1440
.
38.
Jesteadt
,
W.
,
Wier
,
C.C.
, and
Green
,
D.M.
(
1977
). “
Intensity discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
61
,
169
177
.
39.
Johnson
,
D.H.
(
1980
). “
The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones
,”
J. Acoust. Soc. Am.
68
,
1115
1122
.
40.
Johnson
,
D.H.
, and
Kiang
,
N.Y.S.
(
1976
). “
Analysis of discharges recorded simultaneously from pairs of auditory-nerve fibers
,”
Biophys. J.
16
,
719
734
.
41.
Joris
,
P.X.
,
Carney
,
L.H.
,
Smith
,
P.H.
, and
Yin
,
T.C.T.
(
1994a
). “
Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency
,”
J. Neurophysiol.
71
,
1022
1036
.
42.
Joris
,
P.X.
,
Smith
,
P.H.
, and
Yin
,
T.C.T.
(
1994b
). “
Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail
,”
J. Neurophysiol.
71
,
1037
1051
.
43.
Joris
,
P.X.
,
Smith
,
P.H.
, and
Yin
,
T.C.T.
(
1998
). “
Coincidence detection in the auditory system: 50 years after Jeffress
,”
Neuron
21
,
1235
1238
.
44.
Kiang, N.Y.S. (1984). “Peripheral neural processing of auditory information,” in Handbook of Physiology, Section I: The Nervous System, Vol. III, Pt. 2, edited by J.M. Brookhart and V.B. Mountcastle (American Physiological Society, Bethesda, MD), pp. 639–674.
45.
Kiang
,
N.Y.S.
(
1990
). “
Curious oddments of auditory-nerve studies
,”
Hear. Res.
49
,
1
16
.
46.
Kiang, N.Y.S., Watanabe, T., Thomas, E.C., and Clark, L.F. (1965). Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve (MIT Press, Cambridge, MA).
47.
von Klitzing
,
R.
, and
Kohlrausch
,
A.
(
1994
). “
Effect of masker level on overshoot in running- and frozen-noise maskers
,”
J. Acoust. Soc. Am.
95
,
2192
2201
.
48.
Liberman
,
M.C.
(
1978
). “
Auditory-nerve response from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
49.
Liberman
,
M.C.
(
1991
). “
Central projection of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus
,”
J. Comp. Neurol.
313
,
240
258
.
50.
Liberman
,
M.C.
(
1993
). “
Central projection of auditory-nerve fibers of differing spontaneous rate. II. Posteroventral and dorsal cochlear nuclei
,”
J. Comp. Neurol.
327
,
17
36
.
51.
Liberman
,
M.C.
, and
Kiang
,
N.Y.S.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions
,”
Hear. Res.
16
,
75
90
.
52.
Lin
,
T.
, and
Guinan
,
J.J.
Jr.
(
2000
). “
Auditory-nerve-fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives
,”
J. Acoust. Soc. Am.
107
,
2615
2630
.
53.
May
,
B.J.
, and
Sachs
,
M.B.
(
1992
). “
Dynamic range of neural rate responses in the ventral cochlear nucleus of awake cats
,”
J. Neurophysiol.
68
,
1589
1602
.
54.
May, B.J., Le Prell, G.S., Hienz, R.D., and Sachs, M.B. (1997). “Speech representation in the auditory nerve and ventral cochlear nucleus: Quantitative comparisons,” in Acoustical Signal Processing in the Central Auditory System, edited by J. Syka (Plenum, New York), pp. 413–429.
55.
May
,
B.J.
,
Le Prell
,
G.S.
, and
Sachs
,
M.B.
(
1998
). “
Vowel representations in the ventral cochlear nucleus of the cat: Effects of level, background noise, and behavioral state
,”
J. Neurophysiol.
79
,
1755
1767
.
56.
McGill
,
W.J.
, and
Goldberg
,
J.P.
(
1968
). “
A study of the near-miss involving Weber’s law and pure-tone intensity discrimination
,”
Percept. Psychophys.
4
,
105
109
.
57.
Miller
,
M.I.
,
Barta
,
P.E.
, and
Sachs
,
M.B.
(
1987
). “
Strategies for the representation of a tone in background noise in the temporal aspects of the discharge patterns of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
81
,
665
679
.
58.
Miller
,
R.L.
,
Schilling
,
J.R.
,
Franck
,
K.R.
, and
Young
,
E.D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ɛ/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
,
3602
3616
.
59.
Miller
,
R.L.
,
Calhoun
,
B.M.
, and
Young
,
E.D.
(
1999
). “
Discriminability of vowel representation in cat auditory nerve fibers after acoustic trauma
,”
J. Acoust. Soc. Am.
105
,
311
325
.
60.
Moore, B.C.J. (1995). Perceptual Consequences of Cochlear Damage (Oxford University Press, New York).
61.
Moore
,
B.C.J.
, and
Oxenham
,
A.J.
(
1998
). “
Psychoacoustic consequences of compression in the peripheral auditory system
,”
Psychol. Rev.
105
,
108
124
.
62.
Nuttall
,
A.L.
, and
Dolan
,
D.F.
(
1996
). “
Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig
,”
J. Acoust. Soc. Am.
99
,
1556
1565
.
63.
Oxenham
,
A.J.
, and
Moore
,
B.C.J.
(
1995
). “
Overshoot and the “severe departure” from Weber’s Law
,”
J. Acoust. Soc. Am.
97
,
2442
2453
.
64.
Parzen, E. (1962). Stochastic Processes (Holden-Day, San Francisco), Chap. 4.
65.
Patuzzi
,
R.B.
,
Yates
,
G.K.
, and
Johnstone
,
B.M.
(
1989
). “
Outer hair receptor currents and sensorineural hearing loss
,”
Hear. Res.
42
,
47
72
.
66.
Plack
,
C.J.
(
1998
). “
Beneficial effects of notched noise on intensity discrimination in the region of the severe departure
,”
J. Acoust. Soc. Am.
103
,
2530
2538
.
67.
Rabinowitz
,
W.M.
,
Lim
,
J.S.
,
Braida
,
L.D.
, and
Durlach
,
N.I.
(
1976
). “
Intensity perception VI: Summary of recent data on deviations from Weber’s law for 1000-Hz tone pulses
,”
J. Acoust. Soc. Am.
59
,
1506
1509
.
68.
Rasmussen
,
G.L.
(
1940
). “
Studies of the VIIIth cranial nerve in man
,”
Laryngoscope
50
,
67
83
.
69.
Rhode
,
W.S.
(
1971
). “
Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
70.
Rhode, W.S., and Greenberg, S. (1992). “Physiology of the cochlear nuclei,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A.N. Popper and R.R. Fay (Springer Verlag, New York), pp. 94–152.
71.
Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1997). Spikes: Exploring the Neural Code (MIT Press, Cambridge, MA).
72.
Rose
,
J.E.
,
Gross
,
N.B.
,
Geisler
,
C.D.
, and
Hind
,
J.E.
(
1966
). “
Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source
,”
J. Neurophysiol.
29
,
288
314
.
73.
Rouiller
,
E.M.
,
Cronin-Schreiber
,
R.
,
Fekete
,
D.M.
, and
Ryugo
,
D.K.
(
1986
). “
The central projections of intracellularly labeled auditory nerve fibers in cats: an analysis of terminal morphology
,”
J. Comp. Neurol.
249
,
261
278
.
74.
Ruggero, M.A. (1992). “Physiology and coding of sound in the auditory nerve,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A.N. Popper and R.R. Fay (Springer-Verlag, New York), pp. 34–93.
75.
Ruggero
,
M.A.
,
Robles
,
L.
, and
Rich
,
N.C.
(
1992
). “
Two-tone suppression in the basilar membrane of the cochlea: Mechanical basis of auditory-nerve rate suppression
,”
J. Neurophysiol.
68
,
1087
1099
.
76.
Ruggero
,
M.A.
,
Rich
,
N.C.
,
Shivapuja
,
B.G.
, and
Temchin
,
A.N.
(
1996
). “
Auditory-nerve responses to low-frequency tones: Intensity dependence
,”
Aud. Neurosci.
2
,
159
185
.
77.
Ruggero
,
M.A.
,
Rich
,
N.C.
,
Recio
,
A.
,
Narayan
,
S.S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
78.
Ryugo, D.K. (1992). “The auditory nerve: Peripheral innervation, cell body morphology, and central projections,” in The Mammalian Auditory Pathway: Neuroanatomy, edited by D.B. Webster, A.N. Popper, and R.R. Fay (Springer-Verlag, New York), pp. 23–65.
79.
Sachs
,
M.B.
, and
Kiang
,
N.Y.S.
(
1968
). “
Two-tone inhibition in auditory-nerve fibers
,”
J. Acoust. Soc. Am.
43
,
1120
1128
.
80.
Sachs
,
M.B.
, and
Abbas
,
P.J.
(
1974
). “
Rate versus level functions for auditory nerve fibers in cats: Tone burst stimuli
,”
J. Acoust. Soc. Am.
56
,
1835
1847
.
81.
Schneider
,
B.A.
, and
Parker
,
S.
(
1987
). “
Intensity discrimination and loudness for tones in notched noise
,”
Percept. Psychophys.
41
,
253
261
.
82.
Schroder
,
A.C.
,
Viemeister
,
N.F.
, and
Nelson
,
D.A.
(
1994
). “
Intensity discrimination in normal-hearing and hearing-impaired listeners
,”
J. Acoust. Soc. Am.
96
,
2683
2693
.
83.
Siebert
,
W.M.
(
1965
). “
Some implications of the stochastic behavior of primary auditory neurons
,”
Kybernetik
2
,
206
215
.
84.
Siebert, W.M. (1968). “Stimulus transformations in the peripheral auditory system,” in Recognizing Patterns, edited by P.A. Kolers and M. Eden (MIT Press, Cambridge, MA), pp. 104–133.
85.
Siebert
,
W.M.
(
1970
). “
Frequency discrimination in the auditory system: Place or periodicity mechanisms?
,”
Proc. IEEE
58
,
723
730
.
86.
Snyder, D.L., and Miller, M.I. (1991). Random Point Processes in Time and Space (Springer Verlag, New York), Chap. 2.
87.
Steinberg
,
J.C.
, and
Gardner
,
M.B.
(
1937
). “
The dependence of hearing impairment on sound intensity
,”
J. Acoust. Soc. Am.
9
,
11
23
.
88.
Stevens
,
S.S.
, and
Davis
,
H.
(
1936
). “
Psychophysiological Acoustics: Pitch and Loudness
,”
J. Acoust. Soc. Am.
8
,
1
13
.
89.
Teich
,
M.C.
, and
Lachs
,
G.
(
1979
). “
A neural-counting model incorporating refractoriness and spread of excitation. I. Application to intensity discrimination
,”
J. Acoust. Soc. Am.
66
,
1738
1749
.
90.
van Trees, H.L. (1968). Detection, Estimation, and Modulation Theory: Part I (Wiley, New York), Chap. 2.
91.
Viemeister
,
N.F.
(
1974
). “
Intensity discrimination of noise in the presence of band-reject noise
,”
J. Acoust. Soc. Am.
56
,
1594
1600
.
92.
Viemeister
,
N.F.
(
1983
). “
Auditory intensity discrimination at high frequencies in the presence of noise
,”
Science
221
,
1206
1208
.
93.
Viemeister, N.F. (1988a). “
Psychophysical aspects of auditory intensity coding,” in Auditory Function: Neurobiological Bases of Hearing, edited by G.M. Edelman, W.E. Gall, and W.M. Cowan (Wiley, New York), pp. 213–241.
94.
Viemeister
,
N.F.
(
1988b
). “
Intensity coding and the dynamic range problem
,”
Hear. Res.
34
,
267
274
.
95.
Viemeister
,
N.F.
, and
Bacon
,
S.P.
(
1988
). “
Intensity discrimination, increment detection, and magnitude estimation for 1-kHz tones
,”
J. Acoust. Soc. Am.
84
,
172
178
.
96.
Whitfield, I.C. (1967). The Auditory Pathway (Arnold, London).
97.
Winslow, R.L., Barta, P.E., and Sachs, M.B. (1987). “
Rate coding in the auditory nerve,” in Auditory Processing of Complex Sounds, edited by W.A. Yost and C.S. Watson (Erlbaum, New York), pp. 212–224.
98.
Winslow
,
R.L.
, and
Sachs
,
M.B.
(
1988
). “
Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle
,”
Hear. Res.
35
,
165
190
.
99.
Winter
,
I.M.
, and
Palmer
,
A.R.
(
1991
). “
Intensity coding in low-frequency auditory-nerve fibers of the guinea pig
,”
J. Acoust. Soc. Am.
90
,
1958
1967
.
100.
Yates, G.K. (1995). “
Cochlear structure and function,” in Hearing, edited by B.C.J. Moore (Academic, New York), pp. 41–74.
101.
Yin
,
T.C.T.
, and
Chan
,
J.C.K.
(
1990
). “
Interaural time sensitivity in medial superior olive of cat
,”
J. Neurophysiol.
64
,
465
488
.
102.
Yin
,
T.C.T.
Chan
,
J.C.K.
, and
Carney
,
L.H.
(
1987
). “
Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. III. Evidence for cross-correlation
,”
J. Neurophysiol.
58
,
562
583
.
103.
Young, E.D. (1984). “Response characteristics of neurons of the cochlear nuclei,” in Hearing Science, edited by C.I. Berlin (College Hill Press, San Diego), pp. 423–460.
104.
Young
,
E.D.
, and
Barta
,
P.E.
(
1986
). “
Rate responses of auditory-nerve fibers to tones in noise near masked threshold
,”
J. Acoust. Soc. Am.
79
,
426
442
.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.