A novel lumped-element technique is employed to measure the complex density of a gas in circular pores. The complex density expresses the geometry-dependent viscous coupling between the gas and the pore walls and is related to the thermoacoustic function fμ, or equivalently, F(λV). The acoustic impedance of a compliant region coupled to a pore (or pore-array) is measured and the impedance of the compliant region is subtracted to yield the impedance of the pore(s) alone, which is directly related to F(λV). Pores of different lengths are measured in order to eliminate end effects. Working down to very low frequencies achieves a wide range of values for the ratio of the viscous penetration depth to the mean pore size. The results agree very well with analytical solutions for circular pores. The technique is also applied to two porous foam materials. Comparing the results to previous measurements of the complex compressibility, it is shown that two different shape factors (or equivalently, characteristic dimensions) are required to account for the data.

1.
J. W. Strutt (Lord Rayleigh), Theory of Sound, 2nd ed. (Dover, New York, 1945), Vol. II, Sec. 351.
2.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
3.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
4.
K.
Attenborough
, “
Acoustical characteristics of porous materials
,”
Phys. Rep.
82
,
179
227
(
1982
).
5.
G.
Kirchhoff
, “
Ueber den Einflufs der Wärmeleitung in einem Gase auf die Schallbewegung
,”
Ann. Phys. Chem.
134
,
177
193
(
1868
).
6.
C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier, Amsterdam, 1949), Chap. 2.
7.
H.
Utsono
,
T.
Tanaka
, and
T.
Fujikawa
, “
Transfer function method for measuring characteristic impedance and propagation constant of porous materials
,”
J. Acoust. Soc. Am.
86
,
637
643
(
1989
).
8.
J. D.
McIntosh
,
M. T.
Zuroski
, and
R. F.
Lambert
, “
Standing wave apparatus for measuring fundamental properties of acoustic materials in air
,”
J. Acoust. Soc. Am.
91
,
685
695
(
1992
).
9.
M. R.
Stinson
and
Y.
Champoux
, “
Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries
,”
J. Acoust. Soc. Am.
88
,
1929
1938
(
1992
).
10.
Y.
Champoux
and
M. R.
Stinson
, “
On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors
,”
J. Acoust. Soc. Am.
92
,
1120
1131
(
1992
).
11.
Y.
Champoux
and
M. R.
Stinson
, “
Measurement of the characteristic impedance and propagation constant of materials having high flow resistivity
,”
J. Acoust. Soc. Am.
90
,
2182
2191
(
1991
).
12.
H.-S.
Roh
,
W. P.
Arnott
,
J. M.
Sabatier
, and
R.
Raspet
, “
Measurement and calculation of acoustic propagation constants in arrays of small air-filled rectangular tubes
,”
J. Acoust. Soc. Am.
89
,
2617
2624
(
1991
).
13.
R. F.
Lambert
and
J. S.
Tesar
, “
Acoustic structure and propagation in highly porous, layered, fibrous materials
,”
J. Acoust. Soc. Am.
76
,
1231
1237
(
1984
).
14.
A.
Cummings
and
I.-J.
Chang
, “
Acoustic propagation in porous media with internal mean flow
,”
J. Sound Vib.
114
,
565
581
(
1987
).
15.
V.
Tarnow
, “
Measurement of sound propagation in glass wool
,”
J. Acoust. Soc. Am.
97
,
2272
2281
(
1995
).
16.
S. L.
Yaniv
, “
Impedance tube measurement of propagation constant and characteristic impedance of porous acoustical material
,”
J. Acoust. Soc. Am.
54
,
1138
1142
(
1973
).
17.
C.
Bordone-Sacerdote
and
G. G.
Sacerdote
, “
A method for measuring the acoustic impedance of porous materials
,”
Acustica
34
,
77
80
(
1975
).
18.
L. A.
Wilen
, “
Measurements of thermoacoustic functions for single pores
,”
J. Acoust. Soc. Am.
103
,
1406
1412
(
1998
).
19.
L. A.
Wilen
, “
Dynamic measurements of the thermal dissipation function of reticulated vitreous carbon
,”
J. Acoust. Soc. Am.
109
,
179
184
(
2001
).
20.
W. P.
Arnott
,
H. E.
Bass
, and
R.
Raspet
, “
General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections
,”
J. Acoust. Soc. Am.
90
,
3228
3237
(
1991
).
21.
G.
Petculescu
and
L. A.
Wilen
, “
Thermoacoustics in a single pore with an applied temperature gradient
,”
J. Acoust. Soc. Am.
106
,
688
694
(
1999
).
22.
I. B. Crandall, Theory of Vibrating Systems and Sound (Van Nostrand, New York, 1927), pp. 229–241.
23.
A. W.
Nolle
, “
Small-signal impedance of short tubes
,”
J. Acoust. Soc. Am.
25
,
32
39
(
1953
).
24.
G. B.
Thurston
, “
Periodic fluid flow through circular tubes
,”
J. Acoust. Soc. Am.
24
,
653
656
(
1952
).
25.
Duocel aluminum foam and RVC carbon foam, manufactured by Energy Research and Generation, Inc., 900 Stanford Avenue, Oakland, CA 94608.
26.
M.
Stinson
, “
The propagation of plane sound waves in narrow and wide circular tubes, and the generalization to uniform tubes of arbitrary cross-sectional shape
,”
J. Acoust. Soc. Am.
89
,
550
558
(
1991
).
27.
K. A.
Gillis
,
J. B.
Mehl
, and
M. R.
Moldover
, “
Greenspan acoustic viscometer for gases
,”
Rev. Sci. Instrum.
67
,
1850
1857
(
1996
).
28.
J. B.
Mehl
, “
Greenspan acoustic viscometer: Numerical calculations of fields and duct-end effects
,”
J. Acoust. Soc. Am.
106
,
73
82
(
1999
).
29.
G. B.
Thurston
and
C. E.
Martin
, Jr.
, “
Periodic flow through circular orifices
,”
J. Acoust. Soc. Am.
25
,
26
31
(
1953
).
30.
M. R.
Stinson
and
E. A. G.
Shaw
, “
Acoustic impedance of small, circular orifices in thin plates
,”
J. Acoust. Soc. Am.
77
,
2039
2042
(
1985
).
31.
L. J.
Sivian
, “
Acoustic impedance of small orifices
,”
J. Acoust. Soc. Am.
7
,
94
101
(
1935
).
32.
G. B.
Thurston
,
L. E.
Hargrove
, Jr.
, and
B. D.
Cook
, “
Nonlinear properties of circular orifices
,”
J. Acoust. Soc. Am.
29
,
992
1001
(
1957
).
33.
R. L.
Panton
and
A. Y.
Goldman
, “
Correlation of nonlinear orifice impedance
,”
J. Acoust. Soc. Am.
60
,
1390
1396
(
1976
).
34.
U.
Ingard
and
S.
Labate
, “
Acoustic circulation effects and the nonlinear impedance of orifices
,”
J. Acoust. Soc. Am.
22
,
211
218
(
1950
).
35.
G. B.
Thurston
, “
Nonlinear acoustic properties of orifices of varied shapes and edge conditions
,”
J. Acoust. Soc. Am.
30
,
452
455
(
1958
).
36.
P. G.
Smith
and
R. A.
Greenkorn
, “
Theory of acoustical wave propagation in porous media
,”
J. Acoust. Soc. Am.
52
,
247
253
(
1972
).
37.
J-F.
Allard
and
Y.
Champoux
, “
New empirical equations for sound propagation in rigid frame fibrous materials
,”
J. Acoust. Soc. Am.
91
,
3346
3353
(
1992
).
38.
D. L.
Johnson
,
J.
Koplik
, and
L. M.
Schwartz
, “
New pore size paramter characterizing transport in porous media
,”
Phys. Rev. Lett.
57
,
2564
2567
(
1986
).
39.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
40.
Y.
Champoux
and
J-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
41.
D.
Lafarge
,
P.
Lemarinier
, and
J. F.
Allard
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
42.
In other words, the scaling we used to make the curves match in Fig. 6(b) was equivalent to using a smaller characteristic radius for the viscous function.
43.
K.
Attenborough
, “
Models for the acoustical properties of air-saturated granular media
,”
Acta Acust. (Beijing)
1
,
213
226
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.