This work investigates the propagation of acoustic pulses through a chain of elastic spheres embedded in air. This study is an extension of the works realized on individual sphere by several authors for measuring elastic constant and internal friction with a monofrequential acoustic excitation. The frequency analysis of the experimental transmitted train waves exhibit maxima which were correlated to different types of free vibration modes: the Rayleigh modes (Rnl), the torsional modes (Tnl), and the spheroidal modes (Snl). These resonances may be generated separately according to the polarization of the excitation pulse.

1.
M.
de Billy
, “
Experimental study of sound propagation in a chain of spherical beads
,”
J. Acoust. Soc. Am.
108
,
1486
1495
(
2000
).
2.
W. G. Neubauer, Acoustic Reflection from Surfaces and Shapes (Naval Research Laboratory, Washington, D.C.).
3.
V.
Vogt
and
W. G.
Neubauer
, “
Relationship between acoustic reflection and vibrational modes of elastic spheres
,”
J. Acoust. Soc. Am.
60
,
15
22
(
1976
).
4.
T. R. Meeker and A. H. Meitzler, in Physical Acoustics, edited by W. P. Mason (Academic, New York, 1972), Vol. I, Part A, pp. 111–167.
5.
B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II.
6.
Y.
Sâto
and
T.
Usami
, “
Basic study on the oscillation of a homogeneous elastic sphere
,”
Geophys. Mag.
31
,
15
24
(
1962
).
7.
F.
Birch
, “
Velocity and attenuation from resonant vibrations of spheres of rock, glass and steel
,”
J. Geophys. Res.
80
,
756
764
(
1975
).
8.
H.
Lamb
, “
On the vibrations of an elastic spheres
,”
Proc. London Math. Soc.
13
,
189
212
(
1882
).
9.
L.
Flax
,
L. R.
Dragonette
, and
H.
Überall
, “
Theory of elastic resonance excitation by sound scattering
,”
J. Acoust. Soc. Am.
63
,
723
731
(
1978
).
10.
H.
Überall
,
L. R.
Dragonette
, and
L.
Flax
, “
Relation between creeping waves and normal modes of vibration of curves body
,”
J. Acoust. Soc. Am.
61
,
711
715
(
1977
).
11.
R. D.
Doolittle
,
H.
Überall
, and
P.
Ugincius
, “
Sound scattering by elastic cylinders
,”
J. Acoust. Soc. Am.
43
,
1
14
(
1968
).
12.
S. K.
Numrich
,
W. E.
Howell
,
J. V.
Subrahmanyam
, and
H.
Überall
, “
Acoustic ringing response of the individual resonances of an elastic cylinder
,”
J. Acoust. Soc. Am.
80
,
1161
1169
(
1986
).
13.
G.
Maze
,
J. L.
Izbicki
, and
J.
Ripoche
, “
Resonances of plates and cylinders: Guided waves
,”
J. Acoust. Soc. Am.
77
,
1352
1357
(
1985
).
14.
G. V.
Frisk
,
J. W.
Dickey
, and
H.
Überall
, “
Surface wave modes on elastic cylinders
,”
J. Acoust. Soc. Am.
58
,
996
1008
(
1975
).
15.
G.
Maze
,
F.
Lecroq
,
D.
Decultot
,
J.
Ripoche
,
S. K.
Numrich
, and
H.
Überall
, “
Acoustic scattering from finite cylindrical elastic objects
,”
J. Acoust. Soc. Am.
90
,
3271
3278
(
1991
).
16.
N. D.
Veksler
, “
Transverse whispering gallery waves in scattering by elastic cylinders
,”
Ultrasonics
28
,
67
76
(
1990
).
17.
S. K Numrich and H. Überall, in Physical Acoustics, edited by A. D. Pierce and R. N. Thurston (Academic, New York, 1992), Vol. XXI, p. 276.
18.
D. B.
Fraser
and
R. C.
Lecraw
, “
Novel method of measuring elastic and anelastic properties of solids
,”
Rev. Sci. Instrum.
35
,
1113
1115
(
1964
).
19.
K. L.
Williams
,
G. S.
Sammelmann
,
D. H.
Trivet
, and
R. H.
Kackman
, “
Transient response of an elastic spheroidal surface waves and quasicylindrical modes
,”
J. Acoust. Soc. Am.
85
,
2372
2377
(
1989
).
20.
A.
Tverdokhlebov
, “
Resonant cylinder for internal friction measurement
,”
J. Acoust. Soc. Am.
80
,
217
224
(
1986
).
21.
W. P.
Mason
,
K. J.
Marfurt
,
D. N.
Beshers
, and
J. T.
Kuo
, “
Internal friction of metal spheres showing the effect of the anisotropy of the component metals
,”
J. Acoust. Soc. Am.
62
,
1206
1212
(
1977
).
22.
N.
Soga
and
O. L.
Anderson
, “
Elastic properties of tektites measured by resonant sphere technique
,”
J. Geophys. Res.
72
,
1733
1739
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.