This work investigates the propagation of acoustic pulses through a chain of elastic spheres embedded in air. This study is an extension of the works realized on individual sphere by several authors for measuring elastic constant and internal friction with a monofrequential acoustic excitation. The frequency analysis of the experimental transmitted train waves exhibit maxima which were correlated to different types of free vibration modes: the Rayleigh modes the torsional modes and the spheroidal modes These resonances may be generated separately according to the polarization of the excitation pulse.
REFERENCES
1.
M.
de Billy
, “Experimental study of sound propagation in a chain of spherical beads
,” J. Acoust. Soc. Am.
108
, 1486
–1495
(2000
).2.
W. G. Neubauer, Acoustic Reflection from Surfaces and Shapes (Naval Research Laboratory, Washington, D.C.).
3.
V.
Vogt
and W. G.
Neubauer
, “Relationship between acoustic reflection and vibrational modes of elastic spheres
,” J. Acoust. Soc. Am.
60
, 15
–22
(1976
).4.
T. R. Meeker and A. H. Meitzler, in Physical Acoustics, edited by W. P. Mason (Academic, New York, 1972), Vol. I, Part A, pp. 111–167.
5.
B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II.
6.
Y.
Sâto
and T.
Usami
, “Basic study on the oscillation of a homogeneous elastic sphere
,” Geophys. Mag.
31
, 15
–24
(1962
).7.
F.
Birch
, “Velocity and attenuation from resonant vibrations of spheres of rock, glass and steel
,” J. Geophys. Res.
80
, 756
–764
(1975
).8.
H.
Lamb
, “On the vibrations of an elastic spheres
,” Proc. London Math. Soc.
13
, 189
–212
(1882
).9.
L.
Flax
, L. R.
Dragonette
, and H.
Überall
, “Theory of elastic resonance excitation by sound scattering
,” J. Acoust. Soc. Am.
63
, 723
–731
(1978
).10.
H.
Überall
, L. R.
Dragonette
, and L.
Flax
, “Relation between creeping waves and normal modes of vibration of curves body
,” J. Acoust. Soc. Am.
61
, 711
–715
(1977
).11.
R. D.
Doolittle
, H.
Überall
, and P.
Ugincius
, “Sound scattering by elastic cylinders
,” J. Acoust. Soc. Am.
43
, 1
–14
(1968
).12.
S. K.
Numrich
, W. E.
Howell
, J. V.
Subrahmanyam
, and H.
Überall
, “Acoustic ringing response of the individual resonances of an elastic cylinder
,” J. Acoust. Soc. Am.
80
, 1161
–1169
(1986
).13.
G.
Maze
, J. L.
Izbicki
, and J.
Ripoche
, “Resonances of plates and cylinders: Guided waves
,” J. Acoust. Soc. Am.
77
, 1352
–1357
(1985
).14.
G. V.
Frisk
, J. W.
Dickey
, and H.
Überall
, “Surface wave modes on elastic cylinders
,” J. Acoust. Soc. Am.
58
, 996
–1008
(1975
).15.
G.
Maze
, F.
Lecroq
, D.
Decultot
, J.
Ripoche
, S. K.
Numrich
, and H.
Überall
, “Acoustic scattering from finite cylindrical elastic objects
,” J. Acoust. Soc. Am.
90
, 3271
–3278
(1991
).16.
N. D.
Veksler
, “Transverse whispering gallery waves in scattering by elastic cylinders
,” Ultrasonics
28
, 67
–76
(1990
).17.
S. K Numrich and H. Überall, in Physical Acoustics, edited by A. D. Pierce and R. N. Thurston (Academic, New York, 1992), Vol. XXI, p. 276.
18.
D. B.
Fraser
and R. C.
Lecraw
, “Novel method of measuring elastic and anelastic properties of solids
,” Rev. Sci. Instrum.
35
, 1113
–1115
(1964
).19.
K. L.
Williams
, G. S.
Sammelmann
, D. H.
Trivet
, and R. H.
Kackman
, “Transient response of an elastic spheroidal surface waves and quasicylindrical modes
,” J. Acoust. Soc. Am.
85
, 2372
–2377
(1989
).20.
A.
Tverdokhlebov
, “Resonant cylinder for internal friction measurement
,” J. Acoust. Soc. Am.
80
, 217
–224
(1986
).21.
W. P.
Mason
, K. J.
Marfurt
, D. N.
Beshers
, and J. T.
Kuo
, “Internal friction of metal spheres showing the effect of the anisotropy of the component metals
,” J. Acoust. Soc. Am.
62
, 1206
–1212
(1977
).22.
N.
Soga
and O. L.
Anderson
, “Elastic properties of tektites measured by resonant sphere technique
,” J. Geophys. Res.
72
, 1733
–1739
(1967
).
This content is only available via PDF.
© 2001 Acoustical Society of America.
2001
Acoustical Society of America
You do not currently have access to this content.