The method described here predicts the trajectories of articulatory movements for continuous speech by using a kinematic triphone model and the minimum-acceleration model. The kinematic triphone model, which is constructed from articulatory data obtained from experiments using an electro-magnetic articulographic system, is characterized by three kinematic features of a triphone and by the intervals between two successive phonemes in the triphone. After a kinematic feature of a phoneme in a given sentence is extracted, the minimum-acceleration trajectory that coincides with the extremum of the time integral of the squared magnitude of the articulator acceleration is formulated. The calculation of the minimum acceleration requires only linear computation. The method predicts both the qualitative features and the quantitative details of experimentally observed articulation.

1.
Bailly
,
G.
,
Laboissiere
,
R.
, and
Schwartz
,
J. L.
(
1991
). “
Formant trajectories as audible gestures: An alternative for speech synthesis
,”
J. Phonetics
19
,
9
23
.
2.
Browman, C. P., and Goldstein, L. (1992). “Targetless schwa: An articulatory analysis,” in Papers in Laboratory Phonology II, edited by G. J. Docherty and D. R. Ladd (Cambridge University Press, Cambridge), pp. 26–67.
3.
Fujimura, O. (1994). “C/D Model: A computational model of phonetic implementation,” in Language and Computations, edited by E. S. Ristad (American Math Society, Providence), pp. 1–20.
4.
Flash
,
T.
, and
Hogan
,
N.
(
1985
). “
The coordination of arm movements: An experimentally confirmed mathematical model
,”
J. Neurosci.
5
,
1688
1703
.
5.
Hirayama, M., Vatikiotis-Bateson, E., Kawato, M., and Honda, K. (1992). “Neural network modeling of speech motor control,” in Proceedings of the Second International Conference on Spoken Language Processing, pp. 883–886.
6.
Honda, M., and Kaburagi, T. (1994). “A dynamical articulatory model using potential task representation,” in Proceedings of the Third International Conference on Spoken Language Processing, pp. 179–182.
7.
Honda
,
M.
, and
Kaburagi
,
T.
(
1996
). “
Statistical analysis of a phonemic target in articulatory movements
,”
J. Acoust. Soc. Am.
100
,
2598
(A).
8.
Jordan, M. (1989). “Indeterminate motor skill problems,” in Attention and Performance, edited by M. Jeannerod (Erlbaum, Hillsdale, NJ), Vol. XIII.
9.
Kaburagi
,
T.
, and
Honda
,
M.
(
1994
). “
Determination of sagittal tongue shape from the positions of points on the tongue surface
,”
J. Acoust. Soc. Am.
96
,
1356
1366
.
10.
Kaburagi
,
T.
, and
Honda
,
M.
(
1996
). “
A model of articulatory trajectory formation based on the motor tasks of vocal-tract shapes
,”
J. Acoust. Soc. Am.
99
,
3154
3170
.
11.
Kaburagi, T., Honda, M., and Okadome, T. (1999). “A trajectory formation model of articulatory movements using multidimensional phonemic task,” in Proceedings of the Sixth European Conference on Speech Communication and Technology (ESCA, Budapest), Vol. 1, pp. 121–124.
12.
Kent, R. D. (1983). “The segmental organization of speech,” in The Production of Speech, edited by P. F. MacNeilage (Springer, New York).
13.
Krakow
,
R. A.
(
1999
). “
Physiological organization of syllables: A review
,”
J. Phonetics
27
,
23
54
.
14.
Lindblom
,
B.
(
1963
). “
Spectrographic study of vowel reduction
,”
J. Acoust. Soc. Am.
35
,
1773
1781
.
15.
Löfqvist
,
A.
(
1999
). “
Interarticulator phasing, locus equations, and degree of coarticulation
,”
J. Acoust. Soc. Am.
106
,
2022
2030
.
16.
Okadome, T., and Honda, M. (1992). “Trajectory formation in sequential arm movements,” in Proceeding of the IEEE International Conference SMC, 471–478.
17.
Okadome, T., Kaburagi, T., and Honda, M. (1998). “Trajectory formation of articulatory movements for a given sequence of phonemes,” in Proceedings of the Fifth International Conference on Spoken Language Processing (Sydney), Vol. 7, pp. 3131–3134.
18.
Okadome, T., Kaburagi, T., and Honda, M. (1999). “Relations between utterance speed and articulatory movements,” in Proceedings of the Sixth European Conference on Speech Communication and Technology (ESCA, Budapest), Vol. 1, pp. 137–140.
19.
Perkell
,
J. S.
,
Cohen
,
M. H.
,
Svirsky
,
M. A.
,
Matthies
,
M. L.
,
Garabieta
,
I.
, and
Jackson
,
M. T. T.
(
1992
). “
Electromagnetic midsagittal articulometer (EMMA) systems for transducing speech articulatory movements
,”
J. Acoust. Soc. Am.
92
,
3078
3096
.
20.
Perkell
,
J. S.
,
Matthies
,
M. L.
,
Svirsky
,
M. A.
, and
Jordan
,
M. I.
(
1993
). “
Trading relations between tongue-body raising and lip rounding in production of the vowel /u/: A pilot motor equivalence study
,”
J. Acoust. Soc. Am.
93
,
2948
2961
.
21.
Pontryagin, L. S., Boltyanski, V. G., Gamkrelidze, R. V., and Mischenko, E. F. (1962). The Mathematical Theory of Optimal Processes (Interscience, New York).
22.
Saltzman
,
E.
, and
Munhall
,
K. G.
(
1989
). “
A dynamical approach to gestural pattering in speech production
,”
Ecological Psychol.
1
,
333
382
.
23.
Schönle
,
P. W.
,
Gräbe
,
K.
,
Wening
,
P.
,
Höhne
,
J.
,
Schrader
,
J.
, and
Conrad
,
B.
(
1987
). “
Electromagnetic articulography: Use of alternating magnetic fields for tracking movements of multiple points inside and outside the vocal tract
,”
Brain Lang.
31
,
26
35
.
24.
Stevens
,
K. N.
(
1989
). “
On the quantal nature of speech
,”
J. Phonetics
17
,
3
46
.
25.
Vatikiotis-Bateson, E., Hirayama, M., and Kawato, M. (1992). “The articulatory dynamics of running speech: Gestures from phonemes?,” in Proceedings of the Second International Conference on Spoken Language Processing, pp. 887–890.
26.
Wickelgren
,
W. A.
(
1969
). “
Context-sensitive coding, associative memory, and serial order in (speech) behavior
,”
Psychol. Rev.
76
,
1
15
.
This content is only available via PDF.
You do not currently have access to this content.