The objective of this study is to establish the effectiveness of four different time-frequency representations (TFRs)—the reassigned spectrogram, the reassigned scalogram, the smoothed Wigner–Ville distribution, and the Hilbert spectrum—by comparing their ability to resolve the dispersion relationships for Lamb waves generated and detected with optical techniques. This paper illustrates the utility of using TFRs to quantitatively resolve changes in the frequency content of these nonstationary signals, as a function of time. While each technique has certain strengths and weaknesses, the reassigned spectrogram appears to be the best choice to characterize multimode Lamb waves.

1.
R. D. Mindlin, “Waves and vibrations in isotropic elastic plates,” in Structural Mechanics, edited by J. N. Goodier and N. J. Hoff (Pergamon, New York, 1960).
2.
D.
Alleyne
and
P.
Cawley
, “
A two-dimensional Fourier transform method for measurement of propagating multimode signals
,”
J. Acoust. Soc. Am.
89
,
1159
1168
(
1991
).
3.
C.
Eisenhardt
,
L. J.
Jacobs
, and
J.
Qu
, “
Application of laser ultrasonics to develop dispersion curves for elastic plates
,”
J. Appl. Mech.
66,
1043
1045
(
1999
).
4.
W. H.
Prosser
,
M. D.
Seale
, and
B. T.
Smith
, “
Time-frequency analysis of the dispersion of Lamb modes
,”
J. Acoust. Soc. Am.
105
,
2669
2676
(
1999
).
5.
Y.
Hayashi
,
S.
Ogawa
,
H.
Cho
, and
M.
Takemoto
, “
Noncontact estimation of thickness and elastic properties of metallic foils by wavelet transform of laser-generated Lamb waves
,”
Nondestr. Test. Eval.
32
,
21
27
(
1999
).
6.
S.
Holland
,
T.
Kosel
,
R.
Weaver
, and
W.
Sachse
, “
Determination of plate source, detector separation from one signal
,”
Ultrasonics
38
,
620
623
(
2000
).
7.
M.
Niethammer
,
L. J.
Jacobs
,
J.
Qu
, and
J.
Jarzynski
, “
Time-frequency representation of Lamb waves using the reassigned spectrogram
,”
J. Acoust. Soc. Am.
107
,
L19
L24
(
2000
).
8.
L. Cohen, Time-Frequency Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1995).
9.
S. Mallat, A Wavelet Tour of Signal Processing (Academic, New York, 1998).
10.
M. Niethammer, “Application of Time-Frequency Representations to Characterize Ultrasonic Signals,” M.S. thesis, Georgia Institute of Technology, Atlanta, 1999.
11.
S. D.
Meyers
,
B. G.
Kelly
, and
J. J.
OBrien
, “
An introduction to wavelet analysis in oceanography and meterology: With application to the dispersion of Yanai waves
,”
Mon. Weather Rev.
121
,
2858
2866
(
1993
).
12.
D.
Casasent
and
R.
Shenoy
, “
New Gabor wavelets with shift-invariance for improved time-frequency analysis and signal detection,” in
Proc. SPIE
2762
, Wavelet Applications III, edited by
H.
Szu
,
244
255
(
1996
).
13.
L. Cohen, “A Primer on Time-Frequency Analysis,” in Time-Frequency Signal Analysis, edited by B. Boashash (Longman Chesire, 1992), pp. 3–42.
14.
N. E.
Huang
,
Z.
Shen
, and
S. R.
Long
, “
A new view of nonlinear water waves: The Hilbert spectrum
,”
Annu. Rev. Fluid Mech.
31
,
417
457
(
1999
).
15.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N.-C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
,”
Proc. R. Soc. London, Ser. A
454
,
903
995
(
1998
).
16.
L.
Cohen
, “
Time-frequency distributions—A review
,”
Proc. IEEE
77
,
941
981
(
1989
).
17.
K.
Kodera
,
R.
Gendrin
, and
C.
de Villedary
, “
Analysis of time-varying signals with small BT values
,”
IEEE Trans. Acoust., Speech, Signal Process.
26
,
64
76
(
1978
).
18.
F.
Auger
and
P.
Flandrin
, “
Improving the readability of time-frequency and time-scale representations by the reassignment method
,”
IEEE Trans. Signal Process.
43
,
1068
1089
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.