Human phonation does not always involve symmetric motions of the two vocal folds. Asymmetric motions can create slanted or oblique glottal angles. This study reports intraglottal pressure profiles for a Plexiglas model of the larynx with a glottis having a 10-degree divergence angle and either a symmetric orientation or an oblique angle of 15 degrees. For the oblique glottis, one side was divergent and the other convergent. The vocal fold surfaces had 14 pressure taps. The minimal glottal diameter was held constant at 0.04 cm. Results indicated that for either the symmetric or oblique case, the pressure profiles were different on the two sides of the glottis except for the symmetric geometry for a transglottal pressure of 3 cm H2O. For the symmetric case, flow separation created lower pressures on the side where the flow stayed attached to the wall, and the largest pressure differences between the two sides of the channel were 5%–6% of the transglottal pressure. For the oblique case, pressures were lower on the divergent glottal side near the glottal entry and exit, and the cross-channel pressures at the glottis entrance differed by 27% of the transglottal pressure. The empirical pressure distributions were supported by computational results. The observed aerodynamic asymmetries could be a factor contributing to normal jitter values and differences in vocal fold phasing.

1.
Alipour
,
F.
, and
Scherer
,
R. C.
(
1995
). “
Pulsatile airflow during phonation: An excised larynx model
,”
J. Acoust. Soc. Am.
97
,
1241
1248
.
2.
Alipour
,
F.
, and
Scherer
,
R. C
. (
2000
). “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
(
4
),
443
454
.
3.
Alipour
,
F.
,
Fan
,
C.
, and
Scherer
,
R. C.
(
1996a
). “
A numerical simulation of laryngeal flow in a forced-oscillation glottal model
,”
Comput. Speech Lang.
10
,
75
93
.
4.
Alipour
,
F.
,
Scherer
,
R.
, and
Knowles
,
J.
(
1996b
). “
Velocity distributions in glottal models
,”
J. Voice
10
(
1
),
50
58
.
5.
Alipour
,
F.
,
Scherer
,
R.
, and
Patel
,
V. C.
(
1995
). “
An experimental study of pulsatile flow in canine larynges
,”
J. Fluids Eng.
117
,
577
581
.
6.
Ashjaee
,
J.
, and
Johnston
,
J. P.
(
1980
). “
Straight-walled, two-dimensional diffusers—transitory stall and peak pressure recovery
,”
J. Fluids Eng.
102
,
275
282
.
7.
Berke
,
G. S.
,
Moore
,
D. M.
,
Monkewitz
,
P. A.
,
Hanson
,
D. G.
, and
Gerratt
,
B. R.
(
1989
). “
A preliminary study of particle velocity during phonation in an in vivo canine model
,”
J. Voice
3
(
4
),
306
313
.
8.
Bielamowicz
,
S.
,
Berke
,
G. S.
,
Kreiman
,
J.
, and
Gerratt
,
B. R.
(
1999
). “
Exit jet particle velocity in the in vivo canine laryngeal model with variable nerve stimulation
,”
J. Voice
13
(
2
),
153
160
.
9.
Binh, N., and Gauffin, J. (1983). “Aerodynamic measurements in an enlarged static laryngeal model,” Speech Transmission Laboratory Quarterly Progress and Status Report STL-QPSR 2-3/1983, Royal Institute of Technology, Stockholm, pp. 36–60.
10.
Carlson
,
J. J.
,
Johnston
,
J. P.
, and
Sagi
,
C. J.
(
1967
). “
Effects of wall shape on flow regimes and performance in straight, two-dimensional diffusers
,”
J. Basic Eng.
89
,
151
160
.
11.
Cherdron
,
W.
,
Durst
,
F.
, and
Whitelaw
,
J. H.
(
1978
). “
Asymmetric flows and instabilities in symmetric ducts with sudden expansions
,”
J. Fluid Mech.
84
(
1
),
13
31
.
12.
Dieck
,
R. H.
(
1998
). “
Simple calibration uncertainty determination
,”
Instrument Society of America Test Measurement Division Newsletter
,
34
(
1
),
18
28
.
13.
Gauffin, J., Binh, N., Ananthapadmanabha, T. V., and Fant, G. (1983). “Glottal geometry and volume velocity waveform,” in Vocal Fold Physiology: Contemporary Research and Clinical Issues, edited by D. M. Bless and J. H. Abbs (College-Hill, San Diego), pp. 194–201.
14.
Guo
,
C. G.
, and
Scherer
,
R. C.
(
1993
). “
Finite element simulation of glottal flow and pressure
,”
J. Acoust. Soc. Am.
94
(
2
),
688
700
.
15.
Hirano, M. (1981). Clinical Examination of Voice (Springer-Verlag, New York).
16.
Hirano, M., and Bless, D. M. (1993). Videostroboscopic Examination of the Larynx (Singular, San Diego).
17.
Hirano, M., Kiyokawa, K., and Kuria, S. (1988). “Laryngeal muscles and glottis shaping,” in Vocal Physiology: Voice Production, Mechanisms and Functions, edited by O. Fujimura (Raven, New York), pp. 49–65.
18.
Hirschberg, A., Pelorson, X., Hofmans, G. C. J., van Hassel, R. R., and Wijnands, A. P. J. (1996). “Starting transient of the flow through an in-vitro model of the vocal folds,” in Vocal Fold Physiology, Controlling Complexity and Chaos, edited by P. J. Davis and N. H. Fletcher (Singular, San Diego), pp. 31–46.
19.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
(
6
),
1233
1268
.
20.
Ishizaka, K., and Matsudaira, M. (1972). “Fluid Mechanical Considerations of Vocal Cord Vibration,” SCRL Monograph No. 8, Speech Communications Research Laboratory, Inc., Santa Barbara.
21.
Jiang
,
J. J.
, and
Titze
,
I. R.
(
1994
). “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
(
2
),
132
144
.
22.
Kline
,
S. J.
(
1959
). “
On the nature of stall
,”
J. Basic Eng.
81
, Series D, No.
3
,
305
322
.
23.
Koike, Y., and Imaizumi, S. (1988). “Objective evaluation of laryngostroboscopic findings,” in Vocal Physiology: Voice Production, Mechanisms and Functions, edited by O. Fujimura (Raven, New York), pp. 433–442.
24.
Liljencrants, J. (1991). “Numerical simulations of glottal flow,” in Vocal Fold Physiology, Acoustics, Perceptual, and Physiological Aspects of Voice Mechanics, edited by J. Gauffin and B. Hammarberg (Singular, San Diego), pp. 99–104.
25.
Liljencrants, J. (1996). “Analysis by synthesis of glottal airflow in a physical model,” TMH-QPSR 2/1996 Royal Institute of Technology, Stockholm, pp. 139–142.
26.
McGowan
,
R. S.
(
1993
). “
The quasisteady approximation in speech production
,”
J. Acoust. Soc. Am.
94
,
3011
3013
.
27.
Mongeau
,
L.
,
Franchek
,
N.
,
Coker
,
C. H.
, and
Kubli
,
R. A.
(
1997
). “
Characteristics of a pulsating jet through a small modulated orifice, with application to voice production
,”
J. Acoust. Soc. Am.
102
,
1121
1134
.
28.
Parsons
,
D. J.
, and
Hill
,
P. G.
(
1973
). “
Effects of curvature on two-dimensional diffuser flow
,”
J. Fluids Eng.
95
(
3
),
349
360
.
29.
Pelorson
,
X.
,
Hirschberg
,
A.
,
van Hassel
,
R. R.
,
Wijnands
,
A. P. J.
, and
Auregan
,
Y.
(
1994
). “
Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
30.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Wijnands
,
A. P. J.
, and
Bailliet
,
H.
(
1995
). “
Description of the flow through in-vitro models of the glottis during phonation
,”
Acta Acustica
3
,
191
202
.
31.
Reneau
,
L. R.
,
Johnston
,
J. P.
, and
Kline
,
S. J.
(
1967
). “
Performance and design of straight, two-dimensional diffusers
,”
J. Basic Eng.
89
,
141
150
.
32.
Scherer, R. C. (1991). “Physiology of phonation: A review of basic mechanics,” in Phonosurgery: Assessment and Surgical Management of Voice Disorders, edited by C. N. Ford and D. M. Bless (Raven, New York), pp. 77–93.
33.
Scherer, R. C. (1995). “Laryngeal function during phonation,” in Diagnosis and Treatment of Voice Disorders, edited by J. S. Rubin, R. T. Sataloff, G. S. Korovin, and W. J. Gould (Igaku-Shoin Medical, New York), pp. 86–104.
34.
Scherer, R. C., and Guo, C. G. (1990). “Laryngeal modeling: Translaryngeal pressure for a model with many glottal shapes,” in ICSLP Proceedings, 1990 International Conference on Spoken Language Processing, Vol. 1 (Acoustical Society of Japan), pp. 3.1.1–3.1.4.
35.
Scherer, R. C., and Titze, I. R. (1983). “Pressure-flow relationships in a model of the laryngeal airway with a diverging glottis,” in Vocal Fold Physiology: Contemporary Research and Clinical Issues, edited by D. M. Bless and J. H. Abbs (College-Hill, San Diego), pp. 179–193.
36.
Scherer
,
R. C.
,
Titze
,
I. R.
, and
Curtis
,
J. F.
(
1983a
). “
Pressure-flow relationships in two models of the larynx having rectangular glottal shapes
,”
J. Acoust. Soc. Am.
73
,
668
676
.
37.
Scherer, R. C., Vail, V. J., and Rockwell, B. (1995). “Examination of the laryngeal adduction measure EGGW,” in Producing Speech: Contemporary Issues: for Katherine Safford Harris, edited by F. Bell Berti and L. J. Raphael (American Institute of Physics, Woodbury, NY), pp. 269–290.
38.
Scherer, R. C., Titze, I. R., Linville, R., Hueffner, D., and Shaw, K. (1983b). “The effects of vocal fold growths on pressure-flow relationships in the larynx,” in Transcripts of the Eleventh Symposium: Care of the Professional Voice, edited by V. Lawrence (The Voice Foundation, New York), pp. 25–36.
39.
Schönhärl, E. (1960). Die Stroboskopie in der praktischen Laryngologie (Thieme, Stuttgart).
40.
Schutte
,
H. K.
,
Svec
,
J. G.
, and
Sram
,
F.
(
1998
). “
First results of clinical application of videokymography
,”
Laryngoscope
108
,
1206
1210
.
41.
Shadle, C. H., Barney, A. M., and Thomas, D. W. (1991). “An investigation into the acoustics and aerodynamics of the larynx,” in Vocal Fold Physiology, Acoustics, Perceptual, and Physiological Aspects of Voice Mechanics, edited by J. Gauffin and B. Hammarberg (Singular, San Diego), pp. 73–82.
42.
So
,
R. M. C.
(
1976
). “
Entry flow in curved channels
,”
J. Fluids Eng.
98
,
305
310
.
43.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
44.
Streeter, V. L., and Wylie, E. B. (1975). Fluid Mechanics, 6th ed. (McGraw-Hill, New York).
45.
Svec
,
J. G.
, and
Schutte
,
H. K.
(
1996
). “
Videokymography: High-speed line scanning of vocal fold vibration
,”
J. Voice
10
(
2
),
201
205
.
46.
Svec, J. G., Schutte, H. K., and Sram, F. (1999a). “Variability of vibration of normal vocal folds as seen in videokymography,” in Communication and Its Disorders: A Science In Progress, Proceedings 24th Congress International Association of Logopedics and Phoniatrics, Amsterdam, The Netherlands, 23–27 August 1998, edited by P. H. Dejonckere and H. F. M. Peters (International Association of Logopedics and Phoniatrics), Vol. 1, pp. 122–125.
47.
Svec
,
J. G.
,
Sram
,
F.
, and
Schutte
,
H. K.
(
1999b
). “
Videokymography: a new high-speed method for the examination of vocal-fold vibrations
,”
Otorinolaryngologie a foniatrie (Prague)
48
(
3
),
155
162
.
48.
Titze
,
I. R.
(
1974
). “
The human vocal cords: A mathematical model. Part II
,”
Phonetica
29
,
1
21
.
49.
Titze
,
I. R.
(
1986
). “
Mean intraglottal pressure in vocal fold oscillation
,”
J. Phonetics
14
,
359
364
.
50.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
51.
Titze
,
I. R.
, and
Talkin
,
D. T.
(
1979
). “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
,
60
74
.
52.
Tsui
,
Y.-Y.
, and
Wang
,
C.-K.
(
1995
). “
Calculation of laminar separated flow in symmetric two-dimensional diffusers
,”
J. Fluids Eng.
117
,
612
616
.
53.
van den Berg
,
J.
,
Zantema
,
J. T.
, and
Doornenbal
,
P.
(
1957
). “
On the air resistance and the Bernoulli effect of the human larynx
,”
J. Acoust. Soc. Am.
29
,
626
631
.
54.
von Leden
,
H.
,
Moore
,
P.
, and
Timcke
,
R.
(
1960
). “
Laryngeal vibrations: Measurements of the glottic wave. Part III: The pathologic larynx
,”
Arch. Otolaryngol.
71
,
16
35
.
55.
Ward Smith, A. J. (1971). Pressure Losses in Ducted Flows (Davey, Harford, England).
56.
Zemlin, W. R. (1998). Speech and Hearing Science, Anatomy and Physiology, 4th ed. (Allyn & Bacon, Needham Heights, MA), pp. 150–152.
This content is only available via PDF.
You do not currently have access to this content.