A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz’s law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.

1.
A.
Chaigne
and
C.
Lambourg
, “
Time-domain simulation of damped impacted plates. Part I. Theory and experiments
,”
J. Acoust. Soc. Am.
109
,
1422
1432
(
2001
).
2.
A.
Frendi
,
L.
Maestrello
, and
A.
Bayliss
, “
Coupling between plate vibration and acoustic radiation
,”
J. Sound Vib.
177
,
207
226
(
1994
).
3.
S.
Schedin
,
C.
Lambourg
, and
A.
Chaigne
, “
Transient sound fields from impacted plates: Comparison between numerical simulations and experiments
,”
J. Sound Vib.
221
,
471
490
(
1999
).
4.
V.
Doutaut
,
D.
Matignon
, and
A.
Chaigne
, “
Numerical simulations of xylophones. II. Time-domain modeling of the resonator and of the radiated sound pressure
,”
J. Acoust. Soc. Am.
104
,
1633
1647
(
1998
).
5.
A. W. Leissa, Vibrations of Plates, NASA SP-160 (NASA, Washington, D.C., 1969).
6.
K. F. Graff, Wave Motion in Elastics Solids (Dover, New York, 1991).
7.
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944).
8.
A.
Chaigne
and
V.
Doutaut
, “
Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars
,”
J. Acoust. Soc. Am.
101
,
539
557
(
1996
).
9.
A. J. McMillan, “A Theoretical Investigation of the Role of Vibration in Elastic Impact,” Ph.D. thesis, Staffordshire Polytechnic, 1992.
10.
W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed. (Academic, New York, 1992).
11.
S. J. Fenves, N. Perrone, A. R. Robinson, and W. C. Schnobrich, Numerical and Computer Methods in Structural Mechanics (Academic, New York, 1973).
12.
C. J. Moore, An Introduction to the Psychology of Hearing, 2nd ed. (Academic, New York, 1982).
13.
C. Lambourg, “Modèle temporel pour la simulation numérique de plaques vibrantes. Application à la synthèse sonore,” Ph.D. thesis, Université du Maine, 1997.
14.
R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed. (Interscience, New York, 1967).
15.
G. Cohen, Ed., Ecole des Ondes Inria: Méthodes numériques d’ordre élevé pour les ondes en régime transitoire (Collection Didactique, INRIA, 1994).
16.
R. F. S. Hearmon, An Introduction to Applied Anisotropic Elasticity (Oxford University Press, New York, 1961).
17.
J.
Laroche
, “
The use of the matrix pencil method for the spectrum analysis of musical signals
,”
J. Acoust. Soc. Am.
94
,
1958
1965
(
1993
).
18.
L.
Rhaouti
,
A.
Chaigne
, and
P.
Joly
, “
Time-domain modeling and numerical simulation of a kettledrum
,”
J. Acoust. Soc. Am.
105
,
3545
3562
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.