A time-domain formulation for the flexural vibrations in damped rectangular isotropic and orthotropic plates is developed, in order to investigate transient excitation of plates by means of sound synthesis. The model includes three basic mechanisms of damping (thermoelasticity, viscoelasticity and radiation) using a general differential operator. The four rigidity factors of the plate are modified by perturbation terms, each term corresponding to one specific damping mechanism. The first damping term is derived from the coupling between the thermoelastic stress–strain relations and the heat diffusion equation. The second term is obtained from the general differential formulation of viscoelasticity. The third term is obtained through a Padé approximation of the damping factor which governs the coupling of the plate with the surrounding air. The decay factors predicted by the model reproduce adequately the dependence on both dimensions and frequency of the decay factors measured on rectangular plates of various sizes and thicknesses made of four different materials (aluminum, glass, carbon fiber, and wood). The numerical resolution of the complete problem, including initial and boundary conditions, and the comparison between real and simulated sounds are presented in a companion paper [J. Acoust. Soc. Am. 109, 1433–1447 (2000)].

1.
T.
Igarashi
,
M.
Goto
, and
A.
Kawasaki
, “
Studies on impact sound (First report. The sound generated by a ball colliding a plate)
,”
Bull. JSME
28
,
148
154
(
1985
).
2.
T.
Igarashi
and
T.
Aimoto
, “
Studies on impact sound (Second report. Mechanism of sound generation)
,”
Bull. JSME
28
,
1247
1254
(
1985
).
3.
S.
Schedin
,
C.
Lambourg
, and
A.
Chaigne
, “
Transient sound fields from impacted plates: Comparison between numerical simulations and experiments
,”
J. Sound Vib.
221
,
471
490
(
1999
).
4.
C.
Lambourg
,
A.
Chaigne
, and
D.
Matignon
, “
Time-domain simulation of damped impacted plates. Part II. Numerical model and results
,”
J. Acoust. Soc. Am.
109
,
1433
1447
(
2001
).
5.
A. W. Leissa, Vibrations of Plates, NASA SP-160 (NASA, Washington, D.C., 1969).
6.
R. F. S. Hearmon, An Introduction to Applied Anisotropic Elasticity (Oxford University Press, London, 1961).
7.
M. A.
Biot
, “
Thermoelasticity and irreversible thermodynamics
,”
J. Appl. Phys.
27
,
240
253
(
1956
).
8.
C.
Zener
, “
Internal friction in solids—I. Theory of internal friction in reeds
,”
Phys. Rev.
32
,
230
235
(
1937
).
9.
L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound, 2nd ed. (Springer-Verlag, Berlin, 1972).
10.
R. M. Christensen, Theory of Viscoelasticity. An Introduction (Academic, New York, 1982).
11.
E. Skudrzyk, Simple and Complex Vibratory Systems (The Pennsylvania State University Press, Univeristy Park, PA, 1968).
12.
M. E.
Gurtin
and
E.
Sternberg
, “
On the linear theory of viscoelasticity
,”
Arch. Ration. Mech. Anal.
11
,
291
356
(
1962
).
13.
W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed. (Academic, San Diego, 1992).
14.
D.
Bonsignour
, “
Caractéristiques acoustiques d’un matériau viscoélastique
,”
Acustica
23
,
214
222
(
1970
).
15.
P. J. T.
Filipi
,
O.
Lagarrigue
, and
P.-O.
Mattei
, “
Perturbation method for sound radiation by a vibrating plate in a light fluid: Comparison with the exact solution
,”
J. Sound Vib.
177
,
259
275
(
1994
).
16.
A.
Frendi
,
L.
Maestrello
, and
A.
Bayliss
, “
Coupling between plate vibration and acoustic radiation
,”
J. Sound Vib.
177
,
207
226
(
1994
).
17.
G.
Maidanik
, “
The influence of fluid loading on the radiation from orthotropic plates
,”
J. Sound Vib.
3
,
288
299
(
1966
).
18.
M. C. Junger and D. Feit, Sound, Structures, and Their Interaction (MIT Press, Cambridge, 1986).
19.
J.
Laroche
, “
The use of the matrix pencil method for the spectrum analysis of musical signals
,”
J. Acoust. Soc. Am.
94
,
1958
1965
(
1993
).
20.
M. E.
McIntyre
and
J.
Woodhouse
, “
On measuring the elastic and damping constants of orthotropic sheet materials
,”
Acta Mech.
36
,
1397
1416
(
1988
).
21.
L. Meirovitch, Analytical Methods in Vibrations (MacMillan, New York, 1967).
22.
J. Sanchez Hubert and E. Sanchez Palencia, Vibration and Coupling of Continuous Systems—Asymptotic Methods (Springer-Verlag, Berlin, 1989).
23.
V. Bucur, Acoustics of Wood (CRC Press, Boca Raton, 1995).
24.
J. Argyris and H. P. Mlejnek, Dynamics of Structures. Text on Computational Mechanics—VolumeV (Elsevier, Amsterdam, 1991).
25.
A.
Chaigne
and
V.
Doutaut
, “
Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars
,”
J. Acoust. Soc. Am.
101
,
539
557
(
1996
).
26.
L.
Rhaouti
,
A.
Chaigne
, and
P.
Joly
, “
Time-domain modeling and numerical simulation of a kettledrum
,”
J. Acoust. Soc. Am.
105
,
3545
3562
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.