The segregation of concurrent vocal signals is an auditory processing task faced by all vocal species. To segregate concurrent signals, the auditory system must encode the spectral and temporal features of the fused waveforms such that at least one signal can be individually detected. In the plainfin midshipman fish (Porichthys notatus), the overlapping mate calls of neighboring males produce acoustic beats with amplitude and phase modulations at the difference frequencies (dF) between spectral components. Prior studies in midshipman have shown that midbrain neurons provide a combinatorial code of the temporal and spectral characteristics of beats via synchronization of spike bursts to dF and changes in spike rate and interspike intervals with changes in spectral composition. In the present study we examine the effects of changes in signal parameters of beats (overall intensity level and depth of modulation) on the spike train outputs of midbrain neurons. The observed changes in spike train parameters further support the hypothesis that midbrain neurons provide a combinatorial code of the spectral and temporal features of concurrent vocal signals.

1.
Assman
,
P. F.
, and
Summerfield
,
Q.
(
1990
). “
Modeling the perception of concurrent vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
88
,
680
697
.
2.
Bass
,
A. H.
(
1996
). “
Shaping brain sexuality
,”
Am. Sci.
84
,
352
363
.
3.
Bass, A. H., and Clark, C. (in press). “The physical acoustics of underwater sound communication,” in The Springer Handbook of Auditory Research, edited by A. M. Simmons, A. Popper, and R. Fay (Springer-Verlag, New York).
4.
Bass, A. H., Bodnar, D. A., and Marchaterre, M. A. (1999). “Complementary explanations for existing phenotypes in an acoustic communication system,” in The Design of Animal Communication, edited by M. Hauser and M. Konishi (MIT Press, Cambridge, MA), pp. 493–514.
5.
Bass
,
A. H.
,
Bodnar
,
D. A.
, and
Marchaterre
,
M. A.
(
2000
). “
Midbrain acoustic circuitry in a vocalizing fish
,”
J. Comp. Neurol.
419
,
505
531
.
6.
Batschelet, E. (1981). Circular Statstics in Biology (Academic, New York).
7.
Bibikov
,
N. G.
, and
Nizamov
,
S. V.
(
1996
). “
Temporal coding of low frequency amplitude modulation in the torus semicircularis of the grass frog
,”
Hear. Res.
101
,
23
44
.
8.
Bodnar
,
D. A.
, and
Bass
,
A. H.
(
1997
). “
Temporal coding of concurrent acoustic signals in the auditory midbrain
,”
J. Neurosci.
17
,
7553
7564
.
9.
Bodnar
,
D. A.
, and
Bass
,
A. H.
(
1999
). “
A midbrain combinatorial code for temporal and spectral information in concurrent vocal signals
,”
J. Neurophysiol.
81
,
552
563
.
10.
Bodnar, D. A., and Bass, A. H. (2000). Unpublished data.
11.
Brantley
,
R. K.
, and
Bass
,
A. H.
(
1994
). “
Alternative male spawning tactics and acoustic signals in the plainfin midshipman fish, Porichthys notatus (Teleostei, Batrachoididae)
,”
Ethology
96
,
213
232
.
12.
Brokx
,
J. P. L.
, and
Nooteboom
,
S. G.
(
1982
). “
Intonation and the perception of simultaneous voices
,”
J. Phonetics
10
,
23
26
.
13.
Cariani
,
P.
, and
Delgutte
,
B.
(
1996a
). “
Neural correlates of the pitch of complex tones. I. Pitch and pitch salience
,”
J. Neurophysiol.
76
,
1698
1716
.
14.
Cariani
,
P.
, and
Delgutte
,
B.
(
1996b
). “
Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch
,”
J. Neurophysiol.
76
,
1716
1734
.
15.
Chalikia
,
M.
, and
Bregman
,
A.
(
1989
). “
The perceptual segregation of simultaneous auditory signals: Pulse train segregation and vowel segregation
,”
Percept. Psychophys.
46
,
487
496
.
16.
Culling
,
J. F.
, and
Darwin
,
C. J.
(
1994
). “
Perceptual and computational separation of simultaneous vowels: Cues arising from low frequency beating
,”
J. Acoust. Soc. Am.
95
,
1559
1569
.
17.
Crawford
,
J. D.
(
1993
). “
Central auditory neurophysiology of a sound producing fish: The mesencephalon of Pollimyrus isidori (Mormyridae)
,”
J. Comp. Physiol.
172
,
136
152
.
18.
Crawford
,
J. D.
(
1997
). “
Feature-detecting neurons in the brain of a sound producing fish
,”
J. Comp. Physiol.
180
,
439
450
.
19.
de Cheveigne
,
A.
(
1993
). “
Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory proecsssing
,”
J. Acoust. Soc. Am.
93
,
3271
3290
.
20.
de Cheveigne
,
A.
(
1997
). “
Concurrent vowel identification. III. A neural model of harmonic interference cancellation
,”
J. Acoust. Soc. Am.
101
,
2857
2865
.
21.
Fay, R. R. (1993). “Structure and function in sound discrimination among vertebrates,” in The Evolutionary Biology of Hearing, edited by D. B. Webster, R. R. Fay, and A. Popper (Springer, New York), pp. 229–266.
22.
Gerhardt
,
H. C.
(
1981a
). “
Mate call recognition in the green treefrog (Hyla cinerea): Importance of two frequency bands as a function of sound pressure level
,”
J. Comp. Physiol.
144
,
9
16
.
23.
Gerhardt
,
H. C.
(
1981b
). “
Mating call recognition in the barking treefrog (Hyla gratiosa): Responses to synthetic calls and comparisons with the green treefrog (Hyla cinerea)
,”
J. Comp. Physiol.
144
,
17
25
.
24.
Gerhardt
,
H. C.
(
1987
). “
Evolutionary and neurobiological implications of selective phontoaxis in the green treefrog, Hyla cinerea
,”
Anim. Behav.
35
,
1479
1489
.
25.
Gooler
,
D. M.
, and
Feng
,
A. S.
(
1992
). “
Temporal coding in the frog auditory midbrain: The influence of duration and rise time on the processing of complex amplitude-modulated stimuli
,”
J. Neurophysiol.
67
,
1
22
.
26.
Keilson
,
S. E.
,
Richards
,
V. M.
,
Wyman
,
B. T.
, and
Young
,
E. D.
(
1997
). “
The representation of concurrent vowels in the cat anesthetized ventral cochlear nucleus: Evidence for a periodicity-tagged spectral representation
,”
J. Acoust. Soc. Am.
102
,
1056
1071
.
27.
Kozloski
,
J.
, and
Crawford
,
J. D.
(
2000
). “
Transformations of an auditory temporal code in the medulla of a sound producing fish
,”
J. Neurosci.
20
,
2400
2408
.
28.
Langner
,
G.
(
1983
). “
Evidence for neuronal periodicity dertection in the auditory system of the guinea fowl—Implications for pitch analysis in the time domain
,”
Exp. Brain Res.
52
,
333
345
.
29.
Langner
,
G.
, and
Schreiner
,
C. E.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms
,”
J. Neurophysiol.
60
,
1799
1822
.
30.
Lu
,
Z.
, and
Fay
,
R. R.
(
1993
). “
Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus
,”
J. Comp. Physiol.
173
,
33
48
.
31.
McKibben, J. (1998). “A neuroethological analysis of acoustic communication in the plainfin midshipman fish, Porichthys notatus,” Ph.D. thesis, Cornell University.
32.
McKibben
,
J. R.
, and
Bass
,
A. H.
(
1998
). “
Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish
,”
J. Acoust. Soc. Am.
104
,
3520
3535
33.
McKibben, J. R., and Bass, A. H. (2000). Unpublished results.
34.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1992
). “
Modelling the identification of concurrent vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
91
,
233
245
.
35.
Merzenich
,
M. M.
, and
Reid
,
M. D.
(
1974
). “
Representation of the cochlea within the inferior colliculus of the cat
,”
Brain Res.
77
,
397
415
.
36.
Palmer
,
A. R.
(
1990
). “
The representation of the spectra and fundamental frequency of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear nerve fibers
,”
J. Acoust. Soc. Am.
88
,
1412
1426
.
37.
Rees
,
A.
, and
Palmer
,
A. R.
(
1989
). “
Neuronal responses to amplitude-modulated and pure tone stimuli in the guinea pug inferior colliculus, and their modifcation by broadband noise
,”
J. Acoust. Soc. Am.
85
,
1978
1994
.
38.
Rees
,
A.
,
Sarbaz
,
A.
,
Malmierca
,
M. S.
, and
Le Beau
,
F. E. N.
(
1997
). “
Regularity of firing of neurons in the inferior colliculus
,”
J. Neurophysiol.
77
,
2945
2965
.
39.
Rose
,
G. J.
, and
Capranica
,
R. R.
(
1985
). “
Sensitivity to amplitude modulated sounds in an anuran auditory nervous system
,”
J. Neurophysiol.
53
,
446
465
.
40.
Sarbaz, A., and Rees, A. (1996). “Amplitude modulation encoding and regularly firing neurons in the inferior colliculus,” Association for Research in Otolaryngology Midwinter Meeting 19, 155.
41.
Schreiner
,
C. E.
, and
Langner
,
G.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. II. Topographical organization
,”
J. Neurophysiol.
60
,
1823
1840
.
42.
Schreiner
,
C. E.
, and
Langner
,
G.
(
1994
). “
Laminar fine structure of frequency organization in auditory midbrain
,”
Nature (London)
388
,
383
386
.
43.
Semple
,
M. N.
, and
Aitkin
,
L. M.
(
1979
). “
Representation of sound frequency and laterality by units in the central nucleus of cat inferior colliculus
,”
J. Neurophysiol.
42
,
1626
1639
.
This content is only available via PDF.
You do not currently have access to this content.