It is demonstrated that the temperature oscillations near the edge of the thermoacoustic stack are highly anharmonic even in the case of harmonic acoustic oscillations in the thermoacoustic engines. In the optimum regime for the acoustically induced heat transfer, the amplitude of the second harmonic of the temperature oscillations is comparable to that of the fundamental frequency.
REFERENCES
1.
P.
Merkli
and H.
Thomann
, “Thermoacoustic effects in a resonance tube
,” J. Fluid Mech.
70
(1
), 161
–177
(1975
).2.
N.
Rott
, “The heating effect connected with nonlinear oscillations in a resonance tube
,” Z. Angew. Math. Mech.
25
, 619
–634
(1974
).3.
G. W.
Swift
, “Analysis and performance of a large thermoacoustic engine
,” J. Acoust. Soc. Am.
92
, 1551
–1563
(1992
).4.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1982).
5.
N.
Cao
, J. R.
Olson
, G. W.
Swift
, and S.
Chen
, “Energy flux density in a thermoacoustic couple
,” J. Acoust. Soc. Am.
99
, 3456
–3464
(1996
).6.
G.
Mozurkewich
, “Time average temperature distribution in a thermoacoustic stack
,” J. Acoust. Soc. Am.
103
, 380
–388
(1998
).7.
G.
Mozurkewich
, “A model for transverse heat transfer in thermoacoustics
,” J. Acoust. Soc. Am.
103
, 3318
–3326
(1998
).8.
G. W.
Swift
, “Thermoacoustic engines
,” J. Acoust. Soc. Am.
84
, 1145
–1180
(1988
).9.
F. P. Incropera and D. P. De Witt, Introduction to Heat Transfer, 3rd ed. (Wiley, New York, 1985, 1996 reissue).
10.
J. R.
Brewster
, R.
Raspet
, and H.
Bass
, “Temperature discontinuities between elements of thermoacoustic devices
,” J. Acoust. Soc. Am.
102
, 3355
–3360
(1997
).11.
J. H.
Xiao
, “Thermoacoustic theory for cyclic flow regenerators. I. Fundamentals
,” Cryogenics
32
, 895
–901
(1992
).12.
B. J.
Huang
and C. W.
Lu
, “Linear network analysis of regenerator in a cyclic flow system
,” Cryogenics
35
, 203
–207
(1995
).13.
R. Courant, Partial Differential Equations, Vol. II of Method of Mathematical Physics, by R. Courant and D. Hilbert (Interscience Wiley, New York, 1989).
14.
V.
Gusev
, P.
Lotton
, H.
Bailliet
, S.
Job
, and M.
Bruneau
, “Relaxation-time approximation for the evaluation of temperature field in thermoacoustic stacks and heat exchangers
,” J. Sound Vib.
235
(5
), 711
–726
(2000
).15.
G.
Petculescu
and L. A.
Wilen
, “Thermoacoustics in a single pore with an applied temperature gradient
,” J. Acoust. Soc. Am.
106
, 688
–694
(1999
).16.
W. P.
Arnott
, H. E.
Bass
, and R.
Raspet
, “General formulation of thermoacoustics for stacks having arbitrary shaped pore cross sections
,” J. Acoust. Soc. Am.
90
, 3228
–3237
(1991
).17.
A. S.
Worlikar
and O. M.
Knio
, “Numerical simulation of a thermoacoustic refrigerator. I. Unsteady adiabatic flow around the stack
,” J. Comput. Phys.
127
, 424
–451
(1996
).
This content is only available via PDF.
© 2001 Acoustical Society of America.
2001
Acoustical Society of America
You do not currently have access to this content.