It is demonstrated that the temperature oscillations near the edge of the thermoacoustic stack are highly anharmonic even in the case of harmonic acoustic oscillations in the thermoacoustic engines. In the optimum regime for the acoustically induced heat transfer, the amplitude of the second harmonic of the temperature oscillations is comparable to that of the fundamental frequency.

1.
P.
Merkli
and
H.
Thomann
, “
Thermoacoustic effects in a resonance tube
,”
J. Fluid Mech.
70
(
1
),
161
177
(
1975
).
2.
N.
Rott
, “
The heating effect connected with nonlinear oscillations in a resonance tube
,”
Z. Angew. Math. Mech.
25
,
619
634
(
1974
).
3.
G. W.
Swift
, “
Analysis and performance of a large thermoacoustic engine
,”
J. Acoust. Soc. Am.
92
,
1551
1563
(
1992
).
4.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1982).
5.
N.
Cao
,
J. R.
Olson
,
G. W.
Swift
, and
S.
Chen
, “
Energy flux density in a thermoacoustic couple
,”
J. Acoust. Soc. Am.
99
,
3456
3464
(
1996
).
6.
G.
Mozurkewich
, “
Time average temperature distribution in a thermoacoustic stack
,”
J. Acoust. Soc. Am.
103
,
380
388
(
1998
).
7.
G.
Mozurkewich
, “
A model for transverse heat transfer in thermoacoustics
,”
J. Acoust. Soc. Am.
103
,
3318
3326
(
1998
).
8.
G. W.
Swift
, “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
(
1988
).
9.
F. P. Incropera and D. P. De Witt, Introduction to Heat Transfer, 3rd ed. (Wiley, New York, 1985, 1996 reissue).
10.
J. R.
Brewster
,
R.
Raspet
, and
H.
Bass
, “
Temperature discontinuities between elements of thermoacoustic devices
,”
J. Acoust. Soc. Am.
102
,
3355
3360
(
1997
).
11.
J. H.
Xiao
, “
Thermoacoustic theory for cyclic flow regenerators. I. Fundamentals
,”
Cryogenics
32
,
895
901
(
1992
).
12.
B. J.
Huang
and
C. W.
Lu
, “
Linear network analysis of regenerator in a cyclic flow system
,”
Cryogenics
35
,
203
207
(
1995
).
13.
R. Courant, Partial Differential Equations, Vol. II of Method of Mathematical Physics, by R. Courant and D. Hilbert (Interscience Wiley, New York, 1989).
14.
V.
Gusev
,
P.
Lotton
,
H.
Bailliet
,
S.
Job
, and
M.
Bruneau
, “
Relaxation-time approximation for the evaluation of temperature field in thermoacoustic stacks and heat exchangers
,”
J. Sound Vib.
235
(
5
),
711
726
(
2000
).
15.
G.
Petculescu
and
L. A.
Wilen
, “
Thermoacoustics in a single pore with an applied temperature gradient
,”
J. Acoust. Soc. Am.
106
,
688
694
(
1999
).
16.
W. P.
Arnott
,
H. E.
Bass
, and
R.
Raspet
, “
General formulation of thermoacoustics for stacks having arbitrary shaped pore cross sections
,”
J. Acoust. Soc. Am.
90
,
3228
3237
(
1991
).
17.
A. S.
Worlikar
and
O. M.
Knio
, “
Numerical simulation of a thermoacoustic refrigerator. I. Unsteady adiabatic flow around the stack
,”
J. Comput. Phys.
127
,
424
451
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.