A finite-element model of the vocal fold is developed from basic laws of continuum mechanics to obtain the oscillatory characteristics of the vocal folds. The model is capable of accommodating inhomogeneous, anisotropic material properties and irregular geometry of the boundaries. It has provisions for asymmetry across the midplane, both from the geometric and tension point of view, which enables one to simulate certain kinds of voice disorders due to vocal-fold paralysis. It employs the measured viscoelastic properties of the vocal-fold tissues. The detailed construction of the matrix differential equations of motion is presented followed by the solution scheme. Finally, typical results are presented and validated using an eigenvalue method and a commercial finite-element package (ABAQUS).

1.
Alipour, F., and Titze, I. R. (1985a). “Simulation of particle trajectories of vocal fold tissue,” in Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control, edited by I. R. Titze and R. C. Scherer (Denver Center for the Performing Arts, Denver), pp. 183–190.
2.
Alipour
,
F.
, and
Titze
,
I. R.
(
1985b
). “
Viscoelastic modeling of canine vocalis muscle in relaxation
,”
J. Acoust. Soc. Am.
78
,
1939
1943
.
3.
Alipour, F., and Titze, I. R. (1988). “A finite element simulation of vocal fold vibration,” in Proceedings of the Fourteenth Annual Northeast Bioengineering Conference, Durham, NH, edited by J. R. LaCourse, pp. 186–189.
4.
Alipour
,
F.
, and
Titze
,
I. R.
(
1991
). “
Elastic models of vocal fold tissues
,”
J. Acoust. Soc. Am.
90
(No. 3),
1326
1331
.
5.
Alipour F., and Titze, I. R. (1996). “Combined simulation of airflow and vocal fold vibrations,” in Vocal Fold Physiology, Controlling Complexity & Chaos, edited by P. Davis and N. Fletcher (Singular Publishing Group, San Diego, 1996), pp. 17–29.
6.
Alipour
,
F.
, and
Titze
,
I. R.
(
1999
). “
Active and passive characteristics of cricothyroid muscles
,”
J. Voice
13
(No. 1),
1
10
.
7.
Alipour, F., and Scherer, R. C. “Vocal fold bulging effects on phonation using a biophysical computer model,” J. Voice (in press).
8.
Baer, T. (1981). Investigation of the phonatory mechanism. ASHA Reports 11, pp. 38–46.
9.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Krischer
,
K.
(
1994
). “
Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions
,”
J. Acoust. Soc. Am.
95
,
3595
3604
.
10.
Berry
,
D. A.
, and
Titze
,
I. R.
(
1996
). “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
100
,
3345
3354
.
11.
Berry
,
D. A.
,
Moon
,
J. B.
, and
Kuehn
,
D. P.
(
1999
). “
A finite element model of the soft palate
,”
Cleft Palate—Craniofac. J.
36
,
217
223
.
12.
Berry, D. A. “Mechanisms of nonmodal phonation,” J. Phonetics (submitted).
13.
Chan
,
R. W.
, and
Titze
,
I. R.
(
1999
). “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
106
,
2008
2021
.
14.
Flanagan
,
J. L.
, and
Landgraf
,
L.
(
1968
). “
Self-oscillating source for vocal tract synthesizers
,”
IEEE Trans. Audio Electroacoust.
AU-16
,
57
64
.
15.
Hirano
,
M.
,
Kakita
,
Y.
,
Ohmaru
,
K.
, and
Kurita
,
S.
(
1982
). “
Structure and mechanical properties of the vocal fold
,”
Speech Language
7
,
271
297
.
16.
Huebner, K. H. (1975). The Finite Element Method for Engineers (Wiley, New York).
17.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
(
6
),
1233
1268
.
18.
Kaneko, T., Masuda, T., Shimada, A., Suzuki, H., Hayasaki, K., and Komatsu, K. (1986). “Resonance characteristics of the human vocal folds in vivo and in vitro by an impulse excitation,” Laryngeal Function in Phonation and Respiration, edited by T. Baer, C. Sasaki, and K. Harris (Little Brown, Boston), pp. 349–377.
19.
Lai, Y., and Alipour, F. “A computational study of oscillating flow in a model larynx,” Int. J. Numer. Methods Fluids (submitted).
20.
Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotropic Body (Mir, Moscow).
21.
Min
,
Y. B.
,
Titze
,
I. R.
, and
Alipour
,
F.
(
1995
). “
Stress–strain response of the human vocal ligament
,”
Ann. Otol. Rhinol. Laryngol.
104
(
7
),
563
569
.
22.
Saito, S., Fukuda, H., Kitahara, S., Isogai, Y., Tsuzuki, T., Muta, H., Takayama, E., Fujioka, T., Kokawa, N., and Makino, K. (1985), in Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control, edited by I. R. Titze and R. C. Scherer (Denver Center for the Performing Arts, Denver), pp. 169–182.
23.
Švec, J. G., Horacek, J., Sram, F., and Vesely, J. “Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations,” J. Acoust. Soc. Am. (in press).
24.
Titze
,
I. R.
, and
Strong
,
W. J.
(
1975
). “
Normal modes in vocal cord tissues
,”
J. Acoust. Soc. Am.
57
,
736
744
.
25.
Titze
,
I. R.
(
1976
). “
On the mechanics of vocal fold vibration
,”
J. Acoust. Soc. Am.
60
,
1366
1380
.
26.
Ugural, A. C., and Fenster, S. K. (1981). Advanced Strength and Applied Elasticity (Elsevier North-Holland, New York).
27.
Wilhelms-Tricarico
,
R.
(
1995
). “
Physiological modeling of speech production: Methods for modeling soft-tissue articulators
,”
J. Acoust. Soc. Am.
97
,
3085
3098
.
28.
Zienkiewicz, O. C. (1977). The Finite Element Method, 3rd ed. (McGraw-Hill, London).
This content is only available via PDF.
You do not currently have access to this content.