Through an experimental approach, in this paper we investigate the acoustic wave scattering processes involved in the acoustic backscattering at variable incidences from an air-filled submerged cylindrical shell with hemispherical endcaps. Given the 1% shell thickness and the explored low frequency domain, the wave types studied are the circumferential or helical S0 wave and the helical T0 wave only. Between the axial (in the direction of the main axis of the object) and the normal incidences (normal to the main axis), two distinct angular zones can be observed depending on hemispherical or cylindrical excitation. In these zones, after a pressure wave excitation, different series of echoes on the echo wave forms are identified by their arrival times and related wave types. From results in the time domain and those obtained in the frequency domain, each acoustic response from the target corresponding to the two zones of excitation is compared with the acoustic response of canonical objects (spherical shell for axial excitation and tube for normal excitation). This analysis of the acoustic response from the target at various incidences, highlights the influence of both the endcaps and the finite length for a cylindrical shell on scattering. The study is intended to make a contribution to the knowledge of the identification of such geometrically complex objects.

1.
G.
Maze
,
F.
Lecroq
,
D.
Décultot
,
J.
Ripoche
,
S. K.
Numrich
, and
H.
Überall
, “
Acoustic scattering from finite cylindrical elastic objects
,”
J. Acoust. Soc. Am.
90
,
3271
3277
(
1991
).
2.
R. D.
Miller
,
E. Thomas
Moyer
, Jr.
,
H.
Huang
, and
H.
Überall
, “
A comparison between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells
,”
J. Acoust. Soc. Am.
89
,
2185
2196
(
1991
).
3.
D.
Décultot
,
F.
Lecroq
,
G.
Maze
, and
J.
Ripoche
, “
Acoustic scattering from a cylindrical shell bounded by hemispherical endcaps. Resonance interpretation with surface waves propagating in cylindrical and spherical shells
,”
J. Acoust. Soc. Am.
94
,
2916
2923
(
1993
).
4.
B.
Dubus
,
A.
Lavie
, and
N. D.
Veksler
, “
Frequency derivative approach for identification of the wave resonances on immersed elastic bodies
,”
J. Acoust. Soc. Am.
102
,
3523
3529
(
1997
).
5.
A. Klauson, J. Metsaveer, N. Touraine, D. Décultot, and G. Maze, “Sound scattering by a cylindrical shell with hemispherical endcaps,” Transport Noise 98, Joint International EAA/EEAA Symposium, Tallinn, Estonia, Conference Proceedings, 1998, pp. 243–246.
6.
D.
Felix
, “
Numerical model for acoustic radiation of an immersed elastic structure and application to a thin cylindrical shell
,”
J. Acoust. Soc. Am.
95
,
3332
3338
(
1994
).
7.
G.
Maze
,
F.
Léon
, and
J.
Ripoche
, “
Nature de l’onde d’interface de Scholte sur une coque cylindrique
,”
Acustica
81
,
201
213
(
1995
).
8.
M.
Talmant
,
H.
Überall
,
R. D.
Miller
,
M. F.
Werby
, and
J. W.
Dickey
, “
Lamb waves and fluid-borne waves on water-loaded, air-filled thin spherical shells
,”
J. Acoust. Soc. Am.
86
,
278
289
(
1989
).
9.
N. Touraine, J. Chiumia, Ch. Barrière, D. Décultot, G. Maze, A. Klauson, and J. Metsaveer, “Influence of the internal solder layer and of A wave on acoustic scattering from finite cylindrical shells with hemispherical endcaps,” 4th European Conference on Underwater Acoustics, Rome, Italy, Conference Proceedings, 1998, pp. 897–902.
10.
H.
Überall
, “
Helical surface waves on cylinders and cylindrical cavities
,”
Trait. Signal
2
,
381
385
(
1985
).
11.
F.
Léon
,
F.
Lecroq
,
D.
Décultot
, and
G.
Maze
, “
Scattering of an obliquely incident acoustic wave by an infinite hollow cylindrical shell
,”
J. Acoust. Soc. Am.
91
,
1388
1397
(
1992
).
12.
F.
Lecroq
,
F.
Léon
,
D.
Décultot
, and
G.
Maze
, “
Diffusion d’une onde acoustique par un tube limité par des disques plans: études théoriques et expérimentales
,”
Acustica
74
,
51
62
(
1991
).
13.
J. M.
Conoir
,
P.
Rembert
,
O.
Lenoir
, and
J. L.
Izbicki
, “
Relation between surface helical waves and elastic cylinder resonances
,”
J. Acoust. Soc. Am.
93
,
1300
1307
(
1993
).
14.
N. D.
Veksler
,
G.
Maze
,
J.
Ripoche
, and
V.
Porochovskii
, “
Scattering of an obliquely incident plane acoustic wave by a circular cylindrical shell. Results of computations
,”
Acustica-Acta Acustica
82
,
689
697
(
1996
).
15.
S. F.
Morse
,
Ph. L.
Marston
, and
G.
Kaduchak
, “
High-frequency backscattering enhancements by thick finite cylindrical shells in water at oblique incidence: Experiments, interpretation, and calculations
,”
J. Acoust. Soc. Am.
103
,
785
794
(
1998
).
16.
M. L.
Rumerman
, “
Contribution of membrane wave reradiation to scattering from finite cylindrical steel shells in water
,”
J. Acoust. Soc. Am.
93
,
55
65
(
1993
).
17.
X.-L. Bao and H. Überall, “Experimental study of acoustic resonances of elastic spheres and hemispherically endcapped cylinders,” in Acoustic Resonance Scattering, edited by H. Überall (Gordon and Breach, Philadelphia, 1992).
18.
X.-L.
Bao
, “
Echoes and helical surface waves on a finite elastic cylinder excited by sound pulses in water
,”
J. Acoust. Soc. Am.
94
,
1461
1466
(
1993
).
19.
P.
Pareige
,
P.
Rembert
,
G.
Maze
, and
J.
Ripoche
, “
Signature spectrale et identification des résonances d’objets immergés par une méthode impulsionnelle numérisée (MIIR impulsionnelle)
,”
J. Acoust.
3
,
101
106
(
1990
).
20.
Engineering Mechanics Research Corporation, NISA II/DISPLAYS III, EMRC, P. O. Box 696, Troy, Michigan 48099.
21.
Numerical Integration Technologies, theoretical manual of SYSNOISE, NIT N. V., Ambachtenlaan 11a, B-3001 Leuven, Belgium.
22.
N. Touraine, A. Klauson, J. Metsaveer, D. Décultot, and G. Maze, “Effect of internal inhomogeneities on acoustic scattering from finite cylindrical shell bounded by hemispherical endcaps,” Forum Acusticum 1999, 137th Meeting Acoustical Society of America, 2nd convention of the EAA and 25th German Acoustics DAGA Conference, Berlin, Germany, 1999, ACUSTICA-acta acustica Vol. 85, Suppl. 1, Abstract, S162.
23.
The velocity of plate quasi-longitudinal wave is CL=2CT[2−(CL2−2CT2)/(CL2−CT2)]−1/2, using the parameters of Sec. II, CL(SS347)=5237 m/s.
24.
C. Eringen and E. S. Suhubi, Elastodynamics: Linear Theory (Academic, New York, 1975), Vol. 2.
This content is only available via PDF.
You do not currently have access to this content.