Anthropogenic noise impacts marine mammals in a variety of ways. In order to estimate over which ranges this happens, we first need to understand the propagation of noise through the ocean away from the noise source, and, second, understand the relationship between received noise levels and impact thresholds. A software package combining both aspects is presented. (1) A sound propagation model based on ray theory was developed to calculate received noise levels as a function of range, depth, and frequency. (2) Current knowledge of noise impact thresholds for marine mammals was gathered and included in software routines predicting zones of impact on marine mammals around industrial underwater noise sources. As input parameters, this software package requires the source level and spectrum of the noise of interest; physical oceanography data about the local ocean environment such as bathymetry, bottom and surface loss data, and sound speed profiles; and bioacoustical information about the target species in the form of an audiogram, critical auditory bandwidths, spectra of typical animal vocalizations, reported sound levels of disturbance, and criteria for hearing damage. As output, the software produces data files and plots of the zones of audibility, masking, disturbance, and potential hearing damage around a noise source.

1.
C. S.
Johnson
, “
Masked tonal thresholds in the bottlenosed porpoise
,”
J. Acoust. Soc. Am.
44
,
965
967
(
1968
).
2.
C. S.
Johnson
, “
Auditory masking of one pure tone by another in the bottlenose porpoise
,”
J. Acoust. Soc. Am.
49
,
1317
1318
(
1971
).
3.
V. I. Burdin, V. I. Markov, A. M. Reznik, V. M. Skornyakov, and A. G. Chupakov, “Ability of Tursiops truncatus Ponticus Barabasch to distinguish a useful signal against a noise background,” in Morphology and Ecology of Marine Mammals, edited by K. K. Chapskii and V. E. Sokolov (Wiley, New York, 1973), pp. 162–168.
4.
C. S.
Johnson
,
M. W.
McManus
, and
D.
Skaar
, “
Masked tonal hearing thresholds in the beluga whale
,”
J. Acoust. Soc. Am.
85
,
2651
2654
(
1989
).
5.
W. W. L.
Au
and
P. W. B.
Moore
, “
Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin
,”
J. Acoust. Soc. Am.
88
,
1635
1638
(
1990
).
6.
J. A. Thomas, J. L. Pawloski, and W. W. L. Au, “Masked hearing abilities in a false killer whale (Pseudorca crassidens),” in Sensory Abilities of Cetaceans—Laboratory and Field Evidence, edited by J. A. Thomas and R. A. Kastelein (Plenum, New York, 1990), pp. 395–404.
7.
A. Supin and V. Popov, “Frequency-selectivity of the auditory system in the bottlenose dolphin, Tursiops truncatus,” in Ref. 6, pp. 385–393.
8.
A. Y.
Supin
,
V. V.
Popov
, and
V. O.
Klishin
, “
ABR frequency tuning curves in dolphins
,”
J. Comp. Physiol. A
173
,
649
656
(
1993
).
9.
C.
Erbe
and
D. M.
Farmer
, “
Masked hearing thresholds of a beluga whale (Delphinapterus leucas) in icebreaker noise
,”
Deep-Sea Res. II
45
,
1373
1388
(
1998
).
10.
C.
Erbe
, “
Detection of whale calls in noise: Performance comparison between a beluga whale, human listeners and a neural network
,”
J. Acoust. Soc. Am.
108
,
297
303
(
2000
).
11.
W. J. Richardson, C. R. Greene, Jr., C. I. Malme, and D. H. Thomson, Marine Mammals and Noise (Academic, San Diego, CA, 1995).
12.
W. W. L.
Au
,
P. E.
Nachtigall
, and
J. L.
Pawloski
, “
Temporal threshold shift in hearing induced by an octave band of continuous noise in the bottlenose dolphin
,”
J. Acoust. Soc. Am.
106
,
2251
(
1999
).
13.
D.
Kastak
,
R. J.
Schusterman
,
B. L.
Southall
, and
C. J.
Reichmuth
, “
Underwater temporary threshold shift induced by octave-band noise in three species of pinniped
,”
J. Acoust. Soc. Am.
106
,
1142
1148
(
1999
).
14.
J. Bowlin, J. Spiesberger, T. Duda, and L. Freitag, “Ocean acoustical ray-tracing software RAY,” Tech. Rep. WHOI-93-10, Woods Hole Oceanographic Institution, Woods Hole, MA, 1992.
15.
C.
Erbe
,
A. R.
King
,
M.
Yedlin
, and
D. M.
Farmer
, “
Computer models for masked hearing experiments with beluga whales (Delphinapterus leucas)
,”
J. Acoust. Soc. Am.
105
,
2967
2978
(
1999
).
16.
F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics, Woodbury, NY, 1994).
17.
R. J. Urick, Sound Propagation in the Sea (Peninsula, Los Altos, CA, 1982).
18.
W. H.
Thorp
, “
Analytic description of the low-frequency attenuation coefficient
,”
J. Acoust. Soc. Am.
42
,
270
(
1967
).
19.
F. M.
Fisher
and
V. P.
Simmons
, “
Sound absorption in sea water
,”
J. Acoust. Soc. Am.
62
,
558
564
(
1977
).
20.
H. A.
Laible
and
S. D.
Rajan
, “
Temporal evolution of under ice reflectivity
,”
J. Acoust. Soc. Am.
99
,
851
865
(
1996
).
21.
L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).
22.
L. Brekhovskikh and Yu. Lysanov, Fundamentals of Ocean Acoustics (Springer-Verlag, Berlin, 1982).
23.
C. S. Clay and H. Medwin, Acoustical Oceanography: Principles and Applications (Wiley, New York, 1977).
24.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
25.
J. O. Pickles, An Introduction to the Physiology of Hearing (Academic, San Diego, CA, 1988).
26.
B. C. J. Moore, An Introduction to the Psychology of Hearing (Academic, San Diego, CA, 1997).
27.
B. Scharf, “Critical bands,” in Foundations of Modern Auditory Theory, edited by J. V. Tobias (Academic, New York, 1970), pp. 157–202.
28.
H.
Fletcher
, “
Auditory patterns
,”
Rev. Mod. Phys.
12
,
47
65
(
1940
).
29.
C.
Erbe
and
D. M.
Farmer
, “
Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea
,”
J. Acoust. Soc. Am.
108
,
1332
1340
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.