Hearing one’s own speech is important for language learning and maintenance of accurate articulation. For example, people with postlinguistically acquired deafness often show a gradual deterioration of many aspects of speech production. In this manuscript, data are presented that address the role played by acoustic feedback in the control of voice fundamental frequency (F0). Eighteen subjects produced vowels under a control (normal F0 feedback) and two experimental conditions: F0 shifted up and F0 shifted down. In each experimental condition subjects produced vowels during a training period in which their F0 was slowly shifted without their awareness. Following this exposure to transformed F0, their acoustic feedback was returned to normal. Two effects were observed. Subjects compensated for the change in F0 and showed negative aftereffects. When F0 feedback was returned to normal, the subjects modified their produced F0 in the opposite direction to the shift. The results suggest that fundamental frequency is controlled using auditory feedback and with reference to an internal pitch representation. This is consistent with current work on internal models of speech motor control.

1.
Arbib, M. A. (1981). “Perceptual structures and distributed motor control,” Handbook of Physiology—The Nervous System II, edited by V. B. Brooks (American Physiology Society, Bethesda, MD).
2.
Baum
,
S. R.
, and
McFarland
,
D. H.
(
1997
). “
The development of speech adaptation to an artificial palate
,”
J. Acoust. Soc. Am.
102
,
2353
2359
.
3.
Burnett
,
T. A.
,
Freedland
,
M. B.
,
Larson
,
C. R.
, and
Hain
,
T. C.
(
1998
). “
Voice F0 responses to manipulations in pitch feedback
,”
J. Acoust. Soc. Am.
103
,
3153
3161
.
4.
Coleman
,
R. F.
, and
Markham
,
I. W.
(
1991
). “
Normal variations in habitual pitch
,”
J. Voice
5
,
173
177
.
5.
Cowie, R., and Douglas-Cowie, E. (1992). “Postlingually acquired deafness,” in Trends in Linguistics, Studies and Monographs (Mouton de Gruyter, New York), Vol. 62.
6.
Flanagan
,
J. R.
, and
Wing
,
A. M.
(
1993
). “
Modulation of grip force with load force during point-to-point arm movements
,”
Exp. Brain Res.
95
,
131
143
.
7.
Gracco
,
V. L.
, and
Abbs
,
J. H.
(
1986
). “
Variant and invariant characteristics of speech movements
,”
Exp. Brain Res.
65
,
156
166
.
8.
Gramming
,
P.
,
Sundberg
,
J.
,
Ternström
S.
,
Leanderson
,
R.
,
and
Perkins
,
W. H.
(
1988
). “
Relationship between changes in voice pitch and loudness
,”
J. Voice
2
,
118
126
.
9.
Guenther
,
F.
(
1994
). “
A neural network model of speech acquisition and motor equivalent production
,”
Biol. Cybern.
72
,
43
53
.
10.
Hamlet
,
S.
, and
Stone
,
M.
(
1976
). “
Compensatory vowel characteristics resulting from the presence of different types of experimental dental prosthesis
,”
J. Phonetics
4
,
199
218
.
11.
Hamlet
,
S.
, and
Stone
,
M.
(
1978
). “
Compensatory alveolar consonant production induced by wearing a dental prosthesis
,”
J. Phonetics
6
,
227
248
.
12.
Hamlet
,
S.
,
Stone
,
M.
, and
McCarty
,
T.
(
1978
). “
Conditioning dentures viewed from the standpoint of speech adaptation
,”
J. Prosthet. Dent.
40
,
60
66
.
13.
Held
,
R.
(
1965
). “
Plasticity in sensory-motor systems
,”
Sci. Am.
213
,
84
94
.
14.
Hirayama, M., Vatikiotis-Bateson, E., and Kawato, M. (1994). “Inverse dynamics of speech motor control,” in Advances in Neural Information Processing Systems, edited by S. J. Hanson, J. D. Cowan, and C. L. Giles (Morgan Kaufmann, San Mateo, CA), Vol. 6, pp. 1043–1050.
15.
Houde
,
J. F.
, and
Jordan
,
M. I.
(
1998
). “
Sensorimotor adaptation in speech production
,”
Science
279
,
1213
1216
.
16.
Houde, J., Nagarajan, S., and Mersenich, M. (2000). “Modulation of auditory cortex during speech production: An MEG study,” Proceedings of the 5th Seminar on Speech Production: Models and Data, pp. 249–252.
17.
Johansson
,
R. S.
, and
Westling
,
G.
(
1984
). “
Roles of glabrous skin receptors and sensorimotor memory in automatic-control of precision grip when lifting rougher or more slippery objects
,”
Exp. Brain Res.
56
,
550
564
.
18.
Jordan, M. I. (1990). “Motor learning and the degrees of freedom problem,” Attention and Performance, edited by M. Jeannerod (Lawrence Erlbaum, Hillsdale, NJ), Vol. XIII, pp. 796–836.
19.
Jordan, M. I. (1996). “Computational aspects of motor control and motor learning,” Handbook of Perception and Action, edited by H. Heuer and S. Keele (Academic, New York), Vol. 2, pp. 71–120.
20.
Kawahara, H. (1995). “Transformed auditory feedback: The collection of data from 1993.1 to 1994.12 by a new set of analysis procedures,” ATR Technical Report, TR-H-120.
21.
Kawato
,
M.
(
1999
). “
Internal models for motor control and trajectory planning
,”
Curr. Opin. Neurobiol.
9
,
718
727
.
22.
Kawato
,
M.
,
Furukawa
,
K.
, and
Suzuki
,
R.
(
1987
). “
A hierarchical neural-network model for control and learning of voluntary movement
,”
Biol. Cybern.
57
,
169
185
.
23.
Keele
,
S. W.
(
1968
). “
Movement control in skilled motor performance
,”
Psychol. Bull.
70
,
387
403
.
24.
Kirchner
,
J. A.
, and
Wyke
,
B. D.
(
1965
). “
Articular reflex mechanisms in the larynx
,”
Ann. Otol. Rhinol. Laryngol.
74
,
748
768
.
25.
Klatt
,
D.
(
1973
). “
Discrimination of fundamental frequency contours in synthetic speech: Implications for models of pitch perception
,”
J. Acoust. Soc. Am.
53
,
8
16
.
26.
Lane
,
H.
, and
Tranel
,
B.
(
1971
). “
The Lombard sign and the role of hearing in speech
,”
J. Speech Hear. Res.
14
,
677
709
.
27.
Larson
,
C. R.
(
1988
). “
Brain mechanisms involved in the control of vocalization
,”
J. Voice
2
,
301
311
.
28.
Larson
,
C. R.
,
Burnett
,
T. A.
,
Kiran
,
S.
, and
Hain
,
T. C.
(
2000
). “
Effects of pitch-shift velocity on voice F0 responses
,”
J. Acoust. Soc. Am.
107
,
559
564
.
29.
McFarland
,
D. H.
, and
Baum
,
S. R.
(
1995
). “
Incomplete compensation to articulatory perturbation
,”
J. Acoust. Soc. Am.
97
,
1865
1873
.
30.
Miall
,
R. C.
, and
Wolpert
,
D. M.
(
1996
). “
Forward models for physiological motor control
,”
Neural Networks
9
,
1265
1279
.
31.
Milenkovic, P., and Read, C. (1995). CSpeechSP Quick Reference Manual, University of Wisconsin.
32.
Milner, A. D., and Goodale, M. A. (1995). The Visual Brain in Action (Oxford University Press, New York).
33.
Perkell
,
J.
,
Lane
,
H.
,
Svirsky
,
M. A.
, and
Webster
,
J.
(
1992
). “
Speech of cochlear implant patients: A longitudinal study of vowel production
,”
J. Acoust. Soc. Am.
91
,
2961
2979
.
34.
Perkell
,
J.
,
Matthies
,
M.
,
Lane
,
H.
,
Guenther
,
F.
,
Wilhelms-Tricarico
,
R.
,
Wozniak
,
J.
, and
Guoid
,
P.
(
1997
). “
Speech motor control: Acoustic goals, saturation effects, auditory feedback and internal models
,”
Speech Commun.
22
,
227
250
.
35.
Sapir
,
S.
,
McClean
,
M. D.
, and
Larson
,
C. R.
(
1983
). “
Human laryngeal responses to auditory stimulation
,”
J. Acoust. Soc. Am.
73
,
315
321
.
36.
Shadmehr
,
R.
, and
Mussa-Ivaldi
,
F. A.
(
1994
). “
Adaptive representation of dynamics during learning of a motor task
,”
J. Neurosci.
14
,
3208
3224
.
37.
Titze, I. R. (1994). Principles of Voice Production (Prentice-Hall, Englewood Cliffs, NJ).
38.
von Holst, E., and Mittelstaedt, H. (1950). The principle of reafference: Interactions between the central nervous system and the peripheral organs, edited by P. C. Dodwell (Appleton-Century-Crofts, New York, 1971).
39.
Welch, R. B. (1986). “Adaptation of space perception,” in Handbook of Perception and Human Performance, edited by K. R. Boff, L. Kaufman, and J. P. Thomas (Wiley, New York).
40.
Zemlin, W. R. (1981). Speech and Hearing Science: Anatomy and Physiology, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ).
This content is only available via PDF.
You do not currently have access to this content.