Evidence is presented that the basic vocalized sound produced by some cockatoos, specifically the Australian sulfur-crested cockatoo (Cacatua galerita) and the gang-gang cockatoo (Callocephalon fimbriatum), has a chaotic acoustic structure rather than the harmonic structure characteristic of most birdsongs. These findings support those of Fee et al. [Nature (London) 395(3), 67–71 (1999)] on nonlinear period-doubling transitions in the song of the zebra finch (Taeniopygia guttata). It is suggested that syllables with chaotic structure may be a feature of the songs of many birds.

1.
C. H. Greenewalt, Birdsong: Acoustics and Physiology (Smithsonian Institution, Washington, 1968).
2.
R. A.
Suthers
,
F.
Goller
, and
C.
Pytte
, “
The neuromuscular control of birdsong
,”
Philos. Trans. R. Soc. London, Ser. B
354
,
927
939
(
1999
).
3.
N. H.
Fletcher
, “
Birdsong—A quantitative acoustic model
,”
J. Theor. Biol.
135
,
455
481
(
1988
).
4.
N. H.
Fletcher
and
A.
Tarnopolsky
, “
Acoustics of the avian vocal tract
,”
J. Acoust. Soc. Am.
105
,
35
49
(
1998
).
5.
N. H. Fletcher, Acoustic Systems in Biology (Oxford University Press, New York, 1992).
6.
N. H.
Fletcher
, “
Mode locking in nonlinearly excited inharmonic musical oscillators
,”
J. Acoust. Soc. Am.
64
,
1566
1569
(
1978
).
7.
N. H. Fletcher, “Nonlinearity, complexity, and control in vocal systems,” in Vocal Fold Physiology: Controlling Complexity and Chaos, edited by P. J. Davis and N. H. Fletcher (Singular, San Diego, 1996), pp. 3–16.
8.
M. S.
Fee
,
B.
Shraiman
,
B.
Pesaran
, and
P. P.
Mitra
, “
The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird
,”
Nature (London)
395
,
67
71
(
1999
).
9.
F.
Goller
, “
Vocal gymnastics and the bird brain
,”
Nature (London)
395
(
3
),
11
12
(
1999
).
10.
Canberra Ornithologists Group, Birdsongs of Canberra (audio cassette), 1988.
11.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
12.
G. L. Baker and J. P. Gollub, Chaotic Dynamics, 2nd ed. (Cambridge University Press, Cambridge, 1996).
13.
J. C. Sprott and G. Rowlands, Chaos Data Analyzer, Physics Academic Software (American Institute of Physics, New York, 1992).
14.
E. Kononov, Visual Recurrence Analysis, v 4.0, http://pwl.netcom.com/eugenek (1999).
15.
M. J.
Feigenbaum
, “
Universal behavior in nonlinear systems
,”
Los Alamos Sci.
1
,
4
27
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.