The cerebral magnetic field of the auditory steady-state response (SSR) to sinusoidal amplitude-modulated (SAM) tones was recorded in healthy humans. The waveforms of underlying cortical source activity were calculated at multiples of the modulation frequency using the method of source space projection, which improved the signal-to-noise ratio (SNR) by a factor of 2 to 4. Since the complex amplitudes of the cortical source activity were independent of the sensor position in relation to the subject’s head, a comparison of the results across experimental sessions was possible. The effect of modulation frequency on the amplitude and phase of the SSR was investigated at 30 different values between 10 and 98 Hz. At modulation frequencies between 10 and 20 Hz the SNR of harmonics near 40 Hz were predominant over the fundamental SSR. Above 30 Hz the SSR showed an almost sinusoidal waveform with an amplitude maximum at 40 Hz. The amplitude decreased with increasing modulation frequency but was significantly different from the magnetoencephalographic (MEG) background activity up to 98 Hz. Phase response at the fundamental and first harmonic decreased monotonically with increasing modulation frequency. The group delay (apparent latency) showed peaks of 72 ms at 20 Hz, 48 ms at 40 Hz, and 26 ms at 80 Hz. The effects of stimulus intensity, modulation depth, and carrier frequency on amplitude and phase of the SSR were also investigated. The SSR amplitude decreased linearly when stimulus intensity or the modulation depth were decreased in logarithmic steps. SSR amplitude decreased by a factor of 3 when carrier frequency increased from 250 to 4000 Hz. From the phase characteristics, time delays were found in the range of 0 to 6 ms for stimulus intensity, modulation depth, and carrier frequency, which were maximal at low frequencies, low intensities, or maximal modulation depth.

1.
J. S.
Buchwald
and
C. M.
Huang
, “
Far-field acoustic response: origins in the cat
,”
Science
189
,
382
384
(
1975
).
2.
R.
Galambos
,
S.
Makeig
, and
P. J.
Talmachoff
, “
A 40-Hz auditory potential recorded from the human scalp
,”
Proc. Natl. Acad. Sci. USA
78
,
2643
2647
(
1981
).
3.
D.
Regan
, “
Comparison of transient and steady-state methods
,”
Ann. (N.Y.) Acad. Sci.
388
,
45
71
(
1982
).
4.
D. Regan, Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine (Elsevier, New York, 1989).
5.
D. S.
Barth
and
S.
Di
, “
Three-dimensional analysis of auditory-evoked potentials in rat neocortex
,”
J. Neurophysiol.
64
,
1527
1536
(
1990
).
6.
M. N.
Franowicz
and
D. S.
Barth
, “
Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex
,”
J. Neurophysiol.
74
,
96
112
(
1995
).
7.
B. H.
Gaese
and
J.
Ostwald
, “
Temporal coding of amplitude and frequency modulation in the rat auditory cortex
,”
Eur. J. Neurosci.
7
,
438
450
(
1995
).
8.
J. P.
Mäkelä
,
G.
Karmos
,
M.
Molnar
,
V.
Csepe
, and
I.
Winkler
, “
Steady-state responses from the cat auditory cortex
,”
Hear. Res.
45
,
41
50
(
1990
).
9.
M.
Yoshida
,
L. D.
Lowry
,
J. J. C.
Liu
, and
K.
Kaga
, “
Auditory 40-Hz responses in the guinea pig
,”
Am. J. Otolaryngol.
5
,
404
410
(
1984
).
10.
G. B.
Azzena
,
C.
Conti
,
R.
Santarelli
,
F.
Ottaviani
,
G.
Paludetti
, and
M.
Maurizi
, “
Generation of human auditory steady-state responses (SSRs), I: Stimulus rate effects
,”
Hear. Res.
83
,
1
8
(
1995
).
11.
N.
Forss
,
J. P.
Mäkelä
,
L.
McEvoy
, and
R.
Hari
, “
Temporal integration and oscillatory responses of the human auditory cortex revealed by evoked magnetic fields to click trains
,”
Hear. Res.
68
,
89
96
(
1993
).
12.
R.
Hari
,
M.
Hämäläinen
, and
S. L.
Joutsiniemi
, “
Neuromagnetic steady-state responses to auditory stimuli
,”
J. Acoust. Soc. Am.
86
,
1033
1039
(
1989
).
13.
M.
Joliot
,
U.
Ribary
, and
R.
Llinas
, “
Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding
,”
Proc. Natl. Acad. Sci. USA
91
,
11748
11751
(
1994
).
14.
C.
Pantev
,
T.
Elbert
,
S.
Makeig
,
S.
Hampson
,
C.
Eulitz
, and
M.
Hoke
, “
Relationship of transient and steady-state auditory evoked fields
,”
Electroencephalogr. Clin. Neurophysiol.
88
,
389
396
(
1993
).
15.
C.
Pantev
,
L. E.
Roberts
,
T.
Elbert
,
B.
Roß
, and
C.
Wienbruch
, “
Tonotopic organisation of the sources of human auditory steady-state responses
,”
Hear. Res.
101
,
62
74
(
1996
).
16.
G.
Plourde
,
D. R.
Stapells
, and
T. W.
Picton
, “
The human auditory steady-state evoked potentials
,”
Acta Oto-Laryngol. Suppl.
491
,
153
159
(
1991
).
17.
R.
Santarelli
,
M.
Maurizi
,
G.
Conti
,
F.
Ottaviani
,
G.
Paludetti
, and
V. E.
Pettorossi
, “
Generation of human auditory steady-state responses (SSRs). II. Addition of responses to individual stimuli
,”
Hear. Res.
83
,
9
18
(
1995
).
18.
D. R.
Stapells
,
D.
Linden
,
J. B.
Suffield
,
G.
Hamel
, and
T. W.
Picton
, “
Human auditory steady state potentials
,”
Ear Hear.
5
,
105
113
(
1984
).
19.
A. A.
Borbély
, “
Changes in click evoked responses as a function of depth in auditory cortex of the rat
,”
Brain Res.
21
,
217
247
(
1970
).
20.
G.
Conti
,
R.
Santarelli
,
C.
Grassi
,
F.
Ottaviani
, and
G. B.
Azzena
, “
Auditory steady-state responses to click trains from the rat temporal cortex
,”
Clin. Neurophysiol.
110
,
62
70
(
1999
).
21.
G. V.
Simpson
and
R. T.
Knight
, “
Multiple brain systems generating the rat auditory evoked potential. I. Characterization of the auditory cortex response
,”
Brain Res.
602
,
240
250
(
1993
).
22.
L. S.
Lee
,
H.
Lueders
,
D. S.
Dinner
,
R. P.
Lesser
,
J.
Hahn
, and
G.
Klem
, “
Recording of auditory evoked potentials in man using chronic subdural electrodes
,”
Brain Res.
107
,
115
131
(
1984
).
23.
C.
Liégeois-Chauvel
,
A.
Musolino
,
J. M.
Badier
,
P.
Marquis
, and
P.
Chauvel
, “
Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components
,”
Electroencephalogr. Clin. Neurophysiol.
92
,
204
214
(
1994
).
24.
B. W.
Johnson
,
H.
Weinberg
,
U.
Ribary
,
D. O.
Cheyne
, and
R.
Ancill
, “
Topographic distribution of the 40 Hz auditory evoked-related potential in normal and aged subjects
,”
Brain Topogr.
1
,
117
121
(
1988
).
25.
J. P.
Mäkelä
and
R.
Hari
, “
Evidence for cortical origin of the 40 Hz auditory evoked response in man
,”
Electroencephalogr. Clin. Neurophysiol.
66
,
539
546
(
1987
).
26.
G. L.
Romani
,
S. J.
Williamson
,
L.
Kaufman
, and
D.
Brenner
, “
Characterization of the Human Auditory Cortex by the Neuromagnetic Method
,”
Exp. Brain Res.
47
,
381
393
(
1982
).
27.
R. C.
Oldfield
, “
The Assessment and analysis of handiness: The Edinburgh inventory
,”
Neuropsychologica
9
,
97
113
(
1971
).
28.
J.
Jerger
,
R.
Chmiel
,
J. D. J.
Frost
, and
N.
Coker
, “
Effect of sleep on the auditory steady state evoked potential
,”
Ear Hear.
7
,
240
245
(
1986
).
29.
M.
Hämäläinen
,
R.
Hari
,
R. J.
Ilmoniemi
,
J.
Knuutila
, and
O.
Lounasmaa
, “
Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain
,”
Rev. Mod. Phys.
65
,
413
497
(
1993
).
30.
R. J. Ilmoniemi, S. J. Williamson, and W. E. Hostetler, “New method for the study of spontaneous brain activity,” in Biomagnetism ‘87, edited by K. Atsumi, M. Kotani, S. Ueno, T. Katila, and S. J. Williamson (Tokyo Denki University Press, Tokyo, 1987), pp. 182–185.
31.
S. E. Robinson and D. F. Rose, “Current source image estimation by spatially filtered MEG,” in Biomagnetism: Clinical Aspects, edited by M. Hoke, S. Erné, Y. Okada, and G. Romani (Excerpta Medica, Amsterdam, 1992), pp. 761–765.
32.
S. E. Robinson, “Theory and properties of lead field synthesis analysis,” in Advances in Biomagnetism, edited by S. Williamson, M. Hoke, G. Stroink, and M. Kotani (Plenum, New York, 1989), pp. 599–602.
33.
R.
Rodriguez
,
T.
Picton
,
D.
Linden
,
G.
Hamel
, and
G.
Laframboise
, “
Human auditory steady state responses: Effects on intensity and frequency
,”
Ear Hear.
7
,
300
313
(
1986
).
34.
L. Zadeh and C. A. Desoer, Linear System Theory (McGraw-Hill, New York, 1963).
35.
A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application (Cambridge University Press, Cambridge, England, 1997).
36.
N. F.
Viemeister
, “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
(
1979
).
37.
E.
Terhardt
, “
On the perception of periodic sound fluctuations (roughness)
,”
Acustica
30
,
201
213
(
1974
).
38.
A.
Rees
,
G. G. R.
Green
, and
R. H.
Kay
, “
Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man
,”
Hear. Res.
23
,
123
133
(
1986
).
39.
R. D.
Frisina
,
R. L.
Smith
, and
S. C.
Chamberlain
, “
Encoding of amplitude modulation in the gerbil cochlear nucleus. I. A hierarchy of enhancement
,”
Hear. Res.
44
,
99
122
(
1990
).
40.
A.
Rees
and
A. R.
Mo/ller
, “
Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds
,”
Hear. Res.
27
,
129
143
(
1987
).
41.
C. E.
Schreiner
and
J. V.
Urbas
, “
Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields
,”
Hear. Res.
32
,
49
64
(
1988
).
42.
C. E.
Schreiner
and
J. V.
Urbas
, “
Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF)
,”
Hear. Res.
21
,
227
241
(
1986
).
43.
E.
Basar
,
R.
Rosen
,
C.
Basar-Eroglu
, and
F.
Greitschus
, “
The associations between 40 Hz-EEG and the middle latency response of the auditory evoked potential
,”
Int. J. Neurosci.
33
,
103
116
(
1987
).
44.
S.
Kuwada
,
R.
Batra
, and
V. L.
Maher
, “
Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones
,”
Hear. Res.
21
,
179
192
(
1986
).
45.
E.
Stürzebecher
,
W.
Kühne
, and
H.
Berndt
, “
Detectability of the acoustically evoked composite response (40 Hz potential) near threshold
,”
Scand. Audiol.
14
,
23
25
(
1985
).
46.
W.
Szyfter
,
R.
Dauman
, and
R. C.
de Sauvage
, “
40 Hz middle latency responses to low frequency tone pips in normal hearing adults
,”
J. Otolaryngol.
13
,
275
280
(
1984
).
47.
D. P.
Phillips
and
S. E.
Hall
, “
Response timing constraints on the cortical representation of sound time structure
,”
J. Acoust. Soc. Am.
88
,
1403
1411
(
1990
).
48.
P.
Heil
, “
Auditory cortical onset responses revisited. I. first-spike timing
,”
J. Neurophysiol.
77
,
2616
2641
(
1997
).
49.
P.
Heil
, “
Auditory cortical onset responses revisited. II. response strength
,”
J. Neurophysiol.
77
,
2642
2660
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.