It is often assumed that at frequencies in the tuning-curve tail there is a passive, constant coupling of basilar-membrane motion to inner hair cell (IHC) stereocilia. This paper shows changes in the phase of auditory-nerve-fiber (ANF) responses to tail-frequency tones and calls into question whether basilar-membrane-to-IHC coupling is constant. In cat ANFs with characteristic frequencies ⩾10 kHz, efferent effects on the phase of ANF responses to tail-frequency tones were measured. Efferent stimulation caused substantial changes in ANF phase (ΔΦ) (range −80° to +60°, average −15°, a phase lag) with the largest changes at sound levels near threshold and 3–4 octaves below characteristic frequency (CF). At these tail frequencies, efferent stimulation had much less effect on the phase of the cochlear microphonic (CM) than on ANF phase. Thus, since CM is synchronous with basilar-membrane motion for low-frequency stimuli in the cochlear base, the efferent-induced change in ANF phase is unlikely to be due entirely to a change in basilar-membrane phase. At tail frequencies, ANF phase changed with sound level (often by 90°–180°) and the ΔΦ from a fiber was positively correlated with the slope of its phase-versus-sound-level function at the same frequency, as if ΔΦ were caused by a 2–4 dB increase in sound level. This correlation suggests that the processes that produce the change in ANF phase with sound level at tail frequencies are also involved in producing ΔΦ. It is hypothesized that both efferent stimulation and increases in sound level produce similar phase changes because they both produce a similar mix of cochlear vibrational modes.

1.
Anderson
,
D. J.
,
Rose
,
J. E.
,
Hind
,
J. E.
, and
Brugge
,
J. F.
(
1971
). “
Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects
,”
J. Acoust. Soc. Am.
49
,
1131
1139
.
2.
Brown
,
M. C.
, and
Nuttall
,
A. L.
(
1984
). “
Efferent control of cochlear inner hair cell responses in the guinea pig
,”
J. Physiol. (London)
354
,
625
646
.
3.
Cai
,
Y.
, and
Geisler
,
C. D.
(
1996
). “
Temporal patterns of the responses of auditory-nerve fibers to low-frequency tones
,”
Hear. Res.
96
,
83
93
.
4.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
1992
). “
Two-tone suppression in inner hair cell responses: Correlates of rate suppression in the auditory nerve
,”
Hear. Res.
60
,
1
12
.
5.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
1999
). “
Response phase: A view from the inner hair cell
,”
J. Acoust. Soc. Am.
105
,
799
810
.
6.
Cleveland, W. S. (1993). Visualizing Data (AT&T Bell Laboratories, Murray Hill, NJ).
7.
Cody
,
A. R.
, and
Mountain
,
D. C.
(
1989
). “
Low-frequency responses of inner hair cells: Evidence for a mechanical origin of peak splitting
,”
Hear. Res.
41
,
89
99
.
8.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1992
). “
Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts
,”
Hear. Res.
63
,
163
190
.
9.
Dallos
,
P.
, and
Cheatham
,
M. A.
(
1976
). “
Production of cochlear potentials by inner and outer hair cells
,”
J. Acoust. Soc. Am.
60
,
510
512
.
10.
Dallos
,
P.
,
Cheatham
,
M. A.
, and
Ferraro
,
J.
(
1974
). “
Cochlear mechanics, nonlinearities, and cochlear potentials
,”
J. Acoust. Soc. Am.
55
,
597
605
.
11.
Dallos
,
P.
, and
Evans
,
B. N.
(
1995
). “
High-frequency motility of outer hair cells and the cochlear amplifier
,”
Science
267
,
2006
2009
.
12.
Dallos
,
P.
,
He
,
D. Z.
,
Lin
,
X.
,
Sziklai
,
I.
,
Mehta
,
S.
, and
Evans
,
B. N.
(
1997
). “
Acetylcholine, outer hair cell electromotility, and the cochlear amplifier
,”
J. Neurosci.
17
,
2212
2226
.
13.
Doi
,
T.
, and
Ohmori
,
H.
(
1993
). “
Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell
,”
Hear. Res.
67
,
179
188
.
14.
Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap (Chapman & Hall, New York).
15.
Fex
,
J.
(
1959
). “
Augmentation of cochlear microphonic by stimulation of efferent fibers to the cochlea
,”
Acta Oto-Laryngol.
50
,
540
541
.
16.
Fex
,
J.
(
1967
). “
Efferent inhibition in the cochlea related to hair-cell dc activity: Study of postsynaptic activity of the crossed olivo-cochlear fibers in the cat
,”
J. Acoust. Soc. Am.
41
,
666
675
.
17.
Fuchs
,
P. A.
(
1996
). “
Synaptic transmission at vertebrate hair cells
,”
Curr. Opin. Neurobiol.
6
,
514
519
.
18.
Galambos
,
R.
(
1956
). “
Suppression of auditory activity by stimulation of efferent fibers to the cochlea
,”
J. Neurophysiol.
19
,
424
437
.
19.
Gifford
,
M. L.
, and
Guinan
, Jr.,
J. J.
(
1983
). “
Effects of crossed-olivocochlear-bundle stimulation on cat auditory nerve fiber responses to tones
,”
J. Acoust. Soc. Am.
74
,
115
123
.
20.
Goldberg
,
J. M.
, and
Brown
,
P.
(
1969
). “
Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization
,”
J. Neurophysiol.
32
,
613
636
.
21.
Guinan, Jr., J. J. (1996). “
The Physiology of Olivocochlear Efferents,” in The Cochlea, edited by P. J. Dallos, A. N. Popper, and R. R. Fay (Springer, New York), pp. 435–502
.
22.
Guinan
, Jr.,
J. J.
, and
Gifford
,
M. L.
(
1988a
). “
Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate
,”
Hear. Res.
33
,
115
128
.
23.
Guinan
, Jr.,
J. J.
, and
Gifford
,
M. L.
(
1988b
). “
Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF
,”
Hear. Res.
37
,
29
46
.
24.
Guinan
, Jr.,
J. J.
,
Warr
,
W. B.
, and
Norris
,
B. E.
(
1984
). “
Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex
,”
J. Comp. Neurol.
226
,
21
27
.
25.
Housley
,
G. D.
, and
Ashmore
,
J. F.
(
1991
). “
Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea
,”
Proc. R. Soc. London Ser.
244
,
161
167
.
26.
Johnson, D. H. (1974). “
The response of single auditory-nerve fibers in the cat to single tones: Synchrony and average discharge rate,” Ph.D. thesis, Massachusetts Institute of Technology
.
27.
Johnson
,
D. H.
(
1980
). “
The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones
,”
J. Acoust. Soc. Am.
68
,
1115
1122
.
28.
Kakehata
,
S.
,
Nakagawa
,
T.
,
Takasaka
,
T.
, and
Akaike
,
N.
(
1994
). “
Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea
,”
J. Physiol. (London)
463
,
227
244
.
29.
Kiang
,
N. Y. S.
(
1990
). “
Curious oddments of auditory-nerve studies
,”
Hear. Res.
49
,
1
16
.
30.
Kiang, N. Y. S., Watanabe, T., Thomas, E. C., and Clark, L. F. (1965). Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve (MIT Press, Cambridge, MA).
31.
Kiang, N. Y. S., Moxon, E. C., and Levine, R. A. (1970). “
Auditory-nerve activity in cats with normal and abnormal cochleas,” in Ciba Foundation Symposium on Sensorineural Hearing Loss, edited by G. E. W. Wolstenholme and J. Knight (Churchill, London), pp. 241–273
.
32.
Kiang
,
N. Y. S.
,
Lieberman
,
M. C.
,
Sewell
,
W. F.
, and
Guinan
, Jr.,
J. J.
(
1986
). “
Single unit clues to cochlear mechanisms
,”
Hear. Res.
22
,
171
182
.
33.
Konishi
,
T.
, and
Nielsen
,
D. W.
(
1978
). “
The temporal relationship between basilar membrane motion and nerve impulse initiation in auditory nerve fibers of guinea pigs
,”
Jpn. J. Physiol.
28
,
291
307
.
34.
Kros
,
C. J.
, and
Crawford
,
A. C.
(
1990
). “
Potassium currents in inner hair cells isolated from the guinea-pig cochlea
,”
J. Physiol. (London)
421
,
263
291
.
35.
Liberman
,
M. C.
(
1978
). “
Auditory-nerve response from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
36.
Liberman
,
M. C.
, and
Kiang
,
N. Y. S.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions
,”
Hear. Res.
16
,
75
90
.
37.
Lin, T., and Guinan, Jr., J. J. (1999). “
Organ of Corti vibration in modes: Supporting evidence from auditory-nerve-fiber responses to clicks and clicks with efferent stimulation,” Recent Developments in Auditory Mechanics, edited by H. Wada, T. Takasaka, K. Ikeda, and K. Ohyama (World Scientific, Singapore
).
38.
Lin
,
T.
, and
Guinan
, Jr.,
J. J.
, (
2000
). “
Auditory-nerve-fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives
,”
J. Acoust. Soc. Am.
107
,
2615
2630
.
39.
Lumpkin
,
E. A.
, and
Hudspeth
,
A. J.
(
1998
). “
Regulation of free Ca2+ concentration in hair-cell stereocilia
,”
J. Neurosci.
18
,
6300
6318
.
40.
Mardia, K. V. (1972). Statistics of Directional Data (Academic Press, New York).
41.
Mountain, D. C., and Cody, A. R. (1989). “
Mechanical coupling between inner and outer hair cells,” in Cochlear Mechanisms. Structure, Function and Models, edited by J. P. Wilson and D. T. Kemp (Plenum, New York), pp. 153–160
.
42.
Mountain
,
D. C.
,
Geisler
,
C. D.
, and
Hubbard
,
A. E.
(
1980
). “
Stimulation of efferents alters the cochlear microphonic and the sound induced resistance changes measured in scala media of the guinea pig
,”
Hear. Res.
3
,
231
240
.
43.
Murugasu
,
E.
, and
Russell
,
I. J.
(
1996
). “
The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea
,”
J. Neurosci.
16
,
325
332
.
44.
Nuttall
,
A. L.
, and
Dolan
,
D. F.
(
1996
). “
Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig
,”
J. Acoust. Soc. Am.
99
,
1556
1555
.
45.
Oshima
,
W.
, and
Strelioff
,
D.
(
1983
). “
Responses of gerbil and guinea pig auditory nerve fibers to low- frequency sinusoids
,”
Hear. Res.
12
,
167
184
.
46.
Palmer
,
A. R.
, and
Russell
,
I. J.
(
1986
). “
Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair cells
,”
Hear. Res.
24
,
1
15
.
47.
Patuzzi, R. (1996). “
Cochlear Micomechanics and Macromechanics,” in The Cochlea, edited by P. J. Dallos, A. N. Popper, and R. R. Fay (Springer, New York), pp. 186–257
.
48.
Patuzzi
,
R. B.
,
Yates
,
G. K.
, and
Johnstone
,
B. M.
(
1989
). “
The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig
,”
Hear. Res.
39
,
177
188
.
49.
Rhode, W. S. (1973). “
An investigation of postmortem cochlear mechanics using the Mössbauer effect,” in Basic Mechanisms of Hearing, edited by A. R. Møller (Academic, New York), pp. 49–67
.
50.
Rose
,
J. E.
,
Brugge
,
J. F.
,
Anderson
,
D. J.
, and
Hind
,
J. E.
(
1967
). “
Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey
,”
J. Neurophysiol.
30
,
769
793
.
51.
Ruggero, M. A. (1992). “
Physiology and Coding of Sound in the Auditory Nerve,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A. N. Popper and R. R. Fay (Springer, New York), Vol. 2, pp. 34–93
.
52.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1983
). “
Chinchilla auditory-nerve responses to low-frequency tones
,”
J. Acoust. Soc. Am.
73
,
2096
2018
.
53.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1987
). “
Timing of spike initiation in cochlear afferents: Dependence on site of innervation
,”
J. Neurophysiol.
58
,
379
403
.
54.
Ruggero
,
M. A.
,
Robles
,
L.
, and
Rich
,
N. C.
(
1986a
). “
Cochlear microphonics and the initiation of spikes in the auditory nerve: Correlation of single-unit data with neural receptor potentials recorded from the round window
,”
J. Acoust. Soc. Am.
79
,
1491
1498
.
55.
Ruggero
,
M. A.
,
Robles
,
L.
, and
Rich
,
N. C.
(
1986b
). “
Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonic and spike initiation in the VIII nerve
,”
J. Acoust. Soc. Am.
80
,
1375
1383
.
56.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1991
). “
Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane
,”
J. Neurosci.
11
,
1057
1067
.
57.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Shivapuja
,
B. G.
, and
Temchin
,
A. N.
(
1996a
). “
Auditory-nerve responses to low-frequency tones: Intensity dependence
,”
Aud. Neurosci.
2
,
159
185
.
58.
Ruggero
,
M. A.
,
Rich
,
N. C.
, and
Recio
,
A.
(
1996b
). “
The effect of intense acoustic stimulation on basilar-membrane vibrations
,”
Aud. Neurosci.
2
,
329
345
.
59.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
60.
Russell, I. J., and Murugasu, E. (1998). “
Efferent suppression of basilar membrane vibration depends on tone frequency and level: Implications for the active control of basilar membrane mechanics,” in Psychophysical and Physiological Advances in Hearing. Proceedings of the 11th International Symposium on Hearing, edited by A. R. Palmer, A. Rees, and A. Q. Summerfield (Whurr, London), pp. 19–24
.
61.
Russell
,
I. J.
, and
Sellick
,
P. M.
(
1983
). “
Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells
,”
J. Physiol. (London)
338
,
179
206
.
62.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Modulation of responses of spiral ganglion cells in guinea pig cochlea by low frequency sound
,”
Hear. Res.
7
,
199
221
.
63.
Sokolich
,
W. G.
,
Hamernik
,
R. P.
,
Zwislocki
,
J. J.
, and
Schmiedt
,
R. A.
(
1976
). “
Inferred response polarities of cochlear hair cells
,”
J. Acoust. Soc. Am.
59
,
963
974
.
64.
Sridhar
,
T. S.
,
Liberman
,
M. C.
,
Brown
,
M. C.
, and
Sewell
,
W. F.
(
1995
). “
A novel cholinergic ’slow effect’ of olivocochlear stimulation on cochlear potentials in the guinea pig
,”
J. Neurosci.
15
,
3667
3678
.
65.
Sridhar
,
T. S.
,
Brown
,
M. C.
, and
Sewell
,
W. F.
(
1997
). “
Unique post-synaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two different time scales
,”
J. Neurosci.
17
,
428
437
.
66.
Stankovic
,
K. M.
, and
Guinan
, Jr.,
J. J.
(
1999
). “
Medial efferent effects on auditory-nerve responses to tail-frequency tones I. Rate reduction
,”
J. Acoust. Soc. Am.
106
,
857
869
.
67.
Sziklai
,
I.
,
He
,
D. Z. Z.
, and
Dallos
,
P.
(
1996
). “
Effect of acetylcholine and GABA on the transfer function of electromotility in isolated outer hair cells
,”
Hear. Res.
95
,
87
99
.
68.
van Emst
,
M. G.
,
Giguere
,
C.
, and
Smoorenburg
,
G. F.
(
1998
). “
The generation of DC potentials in a computational model of the organ of Corti: Effects of voltage-dependent K+ channels in the basolateral membrane of the inner hair cell
,”
Hear. Res.
115
,
184
196
.
69.
Vetter
,
D. E.
,
Liberman
,
M. C.
,
Mann
,
J.
,
Bahanin
,
J.
,
Boulter
,
J.
,
Brown
,
M. C.
,
Saffiote-Kolman
,
J.
,
Heinemann
,
S.
, and
Elgoyhen
,
A. B.
(
1999
). “
Role of alpha 9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation
,”
Neuron
23
,
93
103
.
70.
Weiss
,
T. F.
(
1982
). “
Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical processes
,”
Hear. Res.
7
,
353
360
.
71.
Wiederhold
,
M. L.
(
1970
). “
Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts
,”
J. Acoust. Soc. Am.
48
,
966
977
.
This content is only available via PDF.
You do not currently have access to this content.