Noninvasive neurophysiological studies in humans support the existence of an orthogonal spatial representation of pure tone frequency and complex tone pitch in auditory cortex [Langner et al., J. Comp. Physiol. A 181, 665–676 (1997)]. However, since this topographic organization is based on neuromagnetic responses evoked by wideband harmonic complexes (HCs) of variable fundamental frequency (f0), and thus interharmonic frequency separation (ΔF), critical band filtering effects due to differential resolvability of harmonics may have contributed to shaping these responses. To test this hypothesis, the present study examined responses evoked by three-component HCs of variable f0 in primary auditory cortex (A1) of the awake monkey. The center frequency of the HCs was fixed at the best frequency (BF) of the cortical site. Auditory evoked potential (AEP), multiunit activity, and current source density techniques were used to evaluate A1 responses as a function of f0(=ΔF). Generally, amplitudes of nearly all response components increased with f0, such that maximal responses were evoked by HCs comprised of low-order resolved harmonics. Statistically significant increases in response amplitude typically occurred at ΔFs between 10% and 20% of center frequency, suggestive of critical bandlike behavior. Complex tone response amplitudes also reflected nonlinear summation in that they could not be predicted by the pure tone frequency sensitivity curves of the cortical sites. A mechanism accounting for the observed results is proposed which involves mutual lateral inhibitory interactions between responses evoked by stimulus components lying within the same critical band. As intracortical AEP components likely to be propagated to the scalp were also strongly modulated by ΔF, these findings indicate that noninvasive recordings of responses to complex sounds may require a consideration of critical band effects in their interpretation.

1.
Arezzo, J. C., Vaughan, H. G., Jr., Kraut, M. A., Steinschneider, M., and Legatt, A. D. (1986). “Intracranial generators of event-related potentials in the monkey,” in Frontiers of Clinical Neuroscience, Vol. 3, edited by R. Q. Cracco and I. Bodis-Wollner (Liss, New York), pp. 174–189.
2.
Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound (MIT, Cambridge, MA).
3.
Brosch
,
M.
, and
Schreiner
,
C. E.
(
1997
). “
Time course of forward masking tuning curves in cat primary auditory cortex
,”
J. Neurophysiol.
77
,
923
943
.
4.
Burrows
,
D. L.
, and
Barry
,
S. J.
(
1990
). “
Electrophysiological evidence for the critical band in humans: middle-latency responses
,”
J. Acoust. Soc. Am.
88
,
180
184
.
5.
Buunen
,
T. J. F.
, and
Rhode
,
W. S.
(
1978
). “
Responses of fibers in the cat's auditory nerve to the cubic difference tone
,”
J. Acoust. Soc. Am.
64
,
772
781
.
6.
Calford
,
M. B.
, and
Semple
,
M. N.
(
1995
). “
Monaural inhibition in cat auditory cortex
,”
J. Neurophysiol.
73
,
1876
1891
.
7.
Calhoun
,
B. M.
, and
Schreiner
,
C. E.
(
1998
). “
Spectral envelope coding in cat auditory cortex: linear and non-linear effects of stimulus characteristics
,”
Eur. J. Neurosci.
10
,
926
940
.
8.
Carlyon
,
R. P.
, and
Shackleton
,
T. M.
(
1994
). “
Comparing the fundamental frequencies of resolved and unresolved harmonics: evidence for two pitch mechanisms?
J. Acoust. Soc. Am.
95
,
3541
3554
.
9.
Cynx
,
J.
, and
Shapiro
,
M.
(
1986
). “
Perception of missing fundamental by a species of songbird (Sturnus vulgaris)
,”
J. Comp. Psych.
100
(
4
),
356
360
.
10.
Ehret
,
G.
, and
Merzenich
,
M. M.
(
1985
). “
Auditory midbrain responses parallel spectral integration phenomena
,”
Science
227
(
4691
),
1245
1247
11.
Ehret
,
G.
, and
Merzenich
,
M. M.
(
1988
). “
Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat
,”
Brain Res. Rev.
13
,
139
163
.
12.
Ehret
,
G.
, and
Schreiner
,
C. E.
(
1997
). “
Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex
,”
J. Comp. Physiol. A
181
,
635
650
.
13.
Fastl
,
H.
, and
Stoll
,
G.
(
1979
). “
Scaling of pitch strength
,”
Hear. Res.
1
,
293
301
.
14.
Fishman
,
Y. I.
,
Reser
,
D. H.
,
Arezzo
,
J. C.
, and
Steinschneider
,
M.
(
1998
). “
Pitch versus spectral encoding of harmonic complex tones in primary auditory cortex of the awake monkey
,”
Brain Res.
786
,
18
30
.
15.
Fishman
,
Y. I.
,
Reser
,
D. H.
,
Arezzo
,
J. C.
, and
Steinschneider
,
M.
(
2000
). “
Compex tone processing in primary auditory cortex of the awake monkey. I. Neural ensemble correlates of roughness
,”
J. Acoust. Soc. Am.
108
,
235
246
.
16.
Galaburda
,
A. M.
, and
Sanides
,
F.
(
1980
). “
Cytoarchitectronic organization of the human auditory cortex
,”
J. Comp. Neurol.
190
,
597
610
.
17.
Galaburda
,
A. M.
, and
Pandya
,
D. N.
(
1983
). “
The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey
,”
J. Comp. Neurol.
221
,
169
184
.
18.
Glasberg
,
B. R.
,
Moore
,
B. C. J.
, and
Nimmo-Smith
,
I.
(
1984
). “
Comparison of auditory filter shapes derived with three different maskers
,”
J. Acoust. Soc. Am.
75
,
536
544
.
19.
Goldstein
,
J. L.
(
1967
). “
Auditory nonlinearity
,”
J. Acoust. Soc. Am.
41
,
676
689
.
20.
Goldstein
,
J. L.
(
1973
). “
An optimum processor theory for the central formation of the pitch of complex tones
,”
J. Acoust. Soc. Am.
54
,
1496
1516
.
21.
Goldstein
,
J. L.
, and
Kiang
,
N. Y. S.
(
1968
). “
Neural correlates of the aural combination tone 2f1−f2
,”
Proc. IEEE
56
(
6
),
981
992
.
22.
Gourevitch, G. (1970). “Detectability of tones in quiet and in noise by rats and monkeys,” in Animal Psychophysics, edited by W. C. Stebbins (Appleton-Century-Crofts, New York), pp. 67–97.
23.
Green
,
D. M.
(
1965
). “
Masking with two tones
,”
J. Acoust. Soc. Am.
37
,
802
813
.
24.
Greenwood
,
D. D.
(
1961
). “
Auditory masking and the critical band
,”
J. Acoust. Soc. Am.
33
,
484
502
.
25.
Hackett
,
T. A.
,
Stepniewska
,
I.
, and
Kaas
,
J. H.
(
1998
). “
Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys
,”
J. Comp. Neurol.
394
,
475
495
.
26.
Halgren
,
E.
,
Marinkovic
,
K.
, and
Chauvel
,
P.
(
1998
). “
Generators of the late cognitive potentials in auditory and visual oddball tasks
,”
Electroencephalogr. Clin. Neurophysiol.
106
,
156
164
.
27.
Hartmann
,
W. M.
(
1996
). “
Pitch, periodicity, and auditory organization
,”
J. Acoust. Soc. Am.
100
,
3491
3502
.
28.
Heffner
,
H.
, and
Whitfield
,
I. C.
(
1976
). “
Perception of the missing fundamental by cats
,”
J. Acoust. Soc. Am.
59
,
915
919
.
29.
Houtsma
,
A. J. M.
, and
Smurzynski
,
J.
(
1990
). “
Pitch identification and discrimination for complex tones with many harmonics
,”
J. Acoust. Soc. Am.
87
,
304
310
.
30.
Howard
,
M. A.
,
Volkov
,
I. O.
,
Mirsky
,
R.
,
Garell
,
P. C.
,
Noh
,
M. D.
,
Granner
,
M.
,
Damasio
,
H.
,
Steinschneider
,
M.
,
Reale
,
R. A.
,
Hind
,
J. E.
, and
Brugge
,
J. F.
(
2000
). “
Auditory cortex on the human posterior superior temporal gyrus
,”
J. Comp. Neurol.
416
,
79
92
.
31.
Jones
,
E. G.
,
Dell'anna
,
M. E.
,
Molinari
,
M.
,
Rausell
,
E.
, and
Hashikawa
,
T.
(
1995
). “
Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity
,”
J. Comp. Neurol.
362
,
153
170
.
32.
Kaas
,
J. H.
, and
Hackett
,
T. A.
(
1998
). “
Subdivisions of auditory cortex and levels of processing in primates
,”
Audiol. Neuro-Otol.
3
,
73
85
.
33.
Kosaki
,
H.
,
Hashikawa
,
T.
,
He
,
J.
, and
Jones
,
E. G.
(
1997
). “
Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys
,”
J. Comp. Neurol.
386
,
304
316
.
34.
Kowalski
,
N.
,
Depireux
,
D. A.
, and
Shamma
,
S. A.
(
1996
). “
Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra
,”
J. Neurophysiol.
76
,
3503
3523
.
35.
Kubota
,
M.
,
Sugimoto
,
S.
,
Horikawa
,
J.
,
Nasu
,
M.
, and
Taniguchi
,
I.
(
1997
). “
Optical imaging of dynamic horizontal spread of excitation in rat auditory cortex slices
,”
Neurosci. Lett.
237
(
2–3
),
77
80
.
36.
Langner
,
G.
(
1997
). “
Neural processing and the representation of periodicity pitch
,”
Acta Otolaryngol. (Stockh) Suppl.
532
,
68
76
.
37.
Langner
,
G.
,
Sams
,
M.
,
Heil
,
P.
, and
Schulze
,
H.
(
1997
). “
Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography
,”
J. Comp. Physiol. A
181
,
665
676
.
38.
Langner
,
G.
, and
Schreiner
,
C. E.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. I. Neuronal Mechanisms
,”
J. Neurophysiol.
60
(
6
),
1799
1822
.
39.
Licklider
,
J. C. R.
(
1951
). “
A duplex theory of pitch perception
,”
Experientia
7
,
128
134
.
40.
Licklider, J. C. R. (1956). “Auditory frequency analysis,” in Information Theory, edited by C. Cherry (Butterworth, London), pp. 253–269.
41.
Liegeois-Chauvel
,
C.
,
Musolino
,
A.
,
Badier
,
J. M.
,
Marquis
,
P.
, and
Chauvel
,
P.
(
1994
). “
Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components
,”
Electroencephalogr. Clin. Neurophysiol.
92
,
204
214
.
42.
Lutkenhoner
,
B.
, and
Steinstrater
,
O.
(
1998
). “
High-precision neuromagnetic study of the functional organization of the human auditory cortex
,”
Audiol. Neuro-Otol.
3
,
191
213
.
43.
Matsubara
,
J. A.
, and
Phillips
,
D. P.
(
1988
). “
Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat
,”
J. Comp. Neurol.
268
,
38
48
.
44.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1991
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch identification
,”
J. Acoust. Soc. Am.
89
,
2866
2882
.
45.
Meddis
,
R.
, and
O'Mard
,
L.
(
1997
). “
A unitory model of pitch perception
,”
J. Acoust. Soc. Am.
102
,
1811
1820
.
46.
Moore, B. C. J. (1989). An Introduction to the Psychology of Hearing, 3rd ed. (Academic, London).
47.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1983
). “
Suggested formulas for calculating auditory-filter bandwidths and excitation patterns
,”
J. Acoust. Soc. Am.
74
,
750
753
.
48.
Moore
,
B. C. J.
, and
Ohgushi
,
K.
(
1993
). “
Audibility of partials in inharmonic complex tones
,”
J. Acoust. Soc. Am.
93
,
452
461
.
49.
Morel
,
A.
,
Garraghty
,
P. E.
, and
Kaas
,
J. H.
(
1993
). “
Tonotopic organization, architechtonic fields and connections of auditory cortex in macaque monkeys
,”
J. Comp. Neurol.
355
,
437
459
.
50.
Naatanen
,
R.
, and
Picton
,
T.
(
1987
). “
The N1 wave of the human electric and magnetic response to sound: a review and analysis of the component structure
,”
Psychophysiology
24
(
4
),
375
425
.
51.
Nelken
,
I.
,
Prut
,
Y.
,
Vaadia
,
E.
, and
Abeles
,
M.
(
1994
). “
Population responses to multifrequency sounds in the cat auditory cortex: one- and two-parameter families of sounds
,”
Hear. Res.
72
,
206
222
.
52.
Ojima
,
H.
, and
He
,
J. F.
(
1997
). “
Cortical convergence originating from domains representing different frequencies in the cat AI
,”
Acta Otolaryngol. Suppl. (Stockh)
532
,
126
128
.
53.
Ojima
,
H.
,
Honda
,
C. N.
, and
Jones
,
E. G.
(
1991
). “
Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex
,”
Cereb. Cortex
1
(
1
),
80
94
.
54.
Ojima
,
H.
,
Honda
,
C. N.
, and
Jones
,
E. G.
(
1992
). “
Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex
,”
Cereb. Cortex
2
(
3
),
197
216
.
55.
Pantev
,
C.
,
Hoke
,
M.
,
Lutkenhoner
,
B.
, and
Lehnertz
,
K.
(
1989
). “
Tonotopic organization of the auditory cortex: pitch versus frequency representation
,”
Science
246
,
486
488
.
56.
Pantev
,
C.
,
Elbert
,
T.
,
Ross
,
B.
,
Eulitz
,
C.
, and
Terhardt
,
E.
(
1996
). “
Binaural fusion and the representation of virtual pitch in the human auditory cortex
,”
Hear. Res.
100
,
164
170
.
57.
Patterson
,
R. D.
(
1974
). “
Auditory filter shape
,”
J. Acoust. Soc. Am.
55
,
802
809
.
58.
Patterson, R. D., and Moore, B. C. J. (1986). “Auditory filters and excitation patterns as representations of frequency resolution,” in Frequency Selectivity in Hearing, edited by B. C. J. Moore (Academic, London), pp. 123–177.
59.
Phillips
,
D. P.
, and
Hall
,
S. E.
(
1992
). “
Multiplicity of inputs in the afferent path to cat auditory cortex neurons revealed by tone-on-tone masking
,”
Cereb. Cortex
2
,
425
433
.
60.
Pickles
,
J. O.
, and
Comis
,
S. D.
(
1976
). “
Auditory nerve-filter bandwidths and critical bandwidths in the cat
,”
J. Acoust. Soc. Am.
60
,
1151
1156
.
61.
Plomp
,
R.
(
1964
). “
The ear as a frequency analyzer
,”
J. Acoust. Soc. Am.
36
,
1628
1636
.
62.
Plomp
,
R.
(
1965
). “
Detectability threshold for combination tones
,”
J. Acoust. Soc. Am.
37
,
1110
1123
.
63.
Plomp
,
R.
(
1967
). “
Pitch of complex tones
,”
J. Acoust. Soc. Am.
41
,
1526
1533
.
64.
Plomp
,
R.
, and
Mimpen
,
A. M.
(
1968
). “
The ear as a frequency analyzer. II
,”
J. Acoust. Soc. Am.
43
,
764
767
.
65.
Rabinowitz
,
W. M.
,
Bilger
,
R. C.
,
Trahiotis
,
C.
, and
Nuetzel
,
J.
(
1980
). “
Two-tone masking in normal hearing listeners
,”
J. Acoust. Soc. Am.
68
,
1096
1106
.
66.
Rauschecker
,
J. P.
,
Tian
,
B.
, and
Hauser
,
M.
(
1995
). “
Processing of complex sounds in the macaque nonprimary auditory cortex
,”
Science
268
(
5207
),
111
114
.
67.
Rauschecker
,
J. P.
,
Tian
,
B.
,
Pons
,
T.
, and
Mishkin
,
M.
(
1997
). “
Serial and parallel processing in rhesus monkey auditory cortex
,”
J. Comp. Neurol.
382
(
1
),
89
103
.
68.
Ritsma
,
R. J.
(
1962
). “
Existence region of the tonal residue. I
,”
J. Acoust. Soc. Am.
34
,
1224
1229
.
69.
Ritsma
,
R. J.
(
1967
). “
Frequencies dominant in the perception of the pitch of complex sounds
,”
J. Acoust. Soc. Am.
42
,
191
198
.
70.
Rouiller
,
E. M.
,
Simm
,
G. M.
,
Villa
,
A. E. P.
,
de Ribaupierre
,
Y.
, and
de Ribaupierre
,
F.
(
1991
). “
Auditory cortico-cortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas
,”
Exp. Brain Res.
86
,
483
505
.
71.
Sachs
,
M. B.
, and
Kiang
,
N. Y.-S.
(
1968
). “
Two-tone inhibition in auditory-nerve fibers
,”
J. Acoust. Soc. Am.
43
,
1120
1128
.
72.
Schreiner
,
C. E.
(
1998
). “
Spatial distribution of responses to simple and complex sounds in the primary auditory cortex
,”
Audiol. Neuro-Otol.
3
,
104
122
.
73.
Schreiner
,
C. E.
, and
Langner
,
G.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. II. Topographical organization
,”
J. Neurophysiol.
60
(
6
),
1823
1840
.
74.
Schulze
,
H.
, and
Langner
,
G.
(
1997
). “
Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Meriones unguiculatus): two different coding strategies for pitch and rhythm?
J. Comp. Physiol. A
181
,
651
663
.
75.
Schwarz
,
D. W. F.
, and
Tomlinson
,
R. W. W.
(
1990
). “
Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta)
,”
J. Neurophysiol.
64
,
282
298
.
76.
Shackleton
,
T. M.
, and
Carlyon
,
R. P.
(
1994
). “
Role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination
,”
J. Acoust. Soc. Am.
95
,
3529
3540
.
77.
Shamma
,
S. A.
, and
Symmes
,
D.
(
1985
). “
Patterns of inhibition in auditory cortical cells in awake squirrel monkeys
,”
Hear. Res.
19
,
1
13
.
78.
Shamma
,
S. A.
,
Fleshman
,
J. W.
,
Wiser
,
P. R.
, and
Versnel
,
H.
(
1993
). “
Organization of response areas in ferret primary auditory complex
,”
J. Neurophysiol.
69
(
2
),
367
383
.
79.
Smoorenburg
,
G. F.
(
1972
). “
Audibility region of combination tones
,”
J. Acoust. Soc. Am.
52
,
603
614
.
80.
Smoorenburg
,
G. F.
,
Gibson
,
M. M.
,
Kitzes
,
L. M.
,
Rose
,
J. E.
, and
Hind
,
J. E.
(
1976
). “
Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat
,”
J. Acoust. Soc. Am.
59
,
945
962
.
81.
Steinschneider
,
M.
,
Schroeder
,
C. E.
,
Arezzo
,
J. C.
, and
Vaughan
, Jr.,
H. G.
(
1994
). “
Speech-evoked activity in primary auditory cortex: effects of voice onset time
,”
Electroencephalogr. Clin. Neurophysiol.
92
,
30
43
.
82.
Steinschneider
,
M.
,
Reser
,
D. H.
,
Fishman
,
Y. I.
,
Schroeder
,
C. E.
, and
Arezzo
,
J. C.
(
1998
). “
Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception
,”
J. Acoust. Soc. Am.
104
,
2935
2955
.
83.
Steinschneider
,
M.
,
Volkov
,
I. O.
,
Noh
,
M. D.
,
Garell
,
P. C.
, and
Howard
,
M. A.
(
1999
). “
Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex
,”
J. Neurophysiol.
82
(
5
),
2346
2357
.
84.
Steinschneider
,
M.
,
Tenke
,
C. E.
,
Schroeder
,
C. E.
,
Javitt
,
D. C.
,
Simpson
,
G. V.
,
Arezzo
,
J. C.
, and
Vaughan
, Jr.,
H. G.
(
1992
). “
Cellular generators of the cortical auditory evoked potential initial component
,”
Electroencephalogr. Clin. Neurophysiol.
84
,
196
200
.
85.
Terhardt
,
E.
(
1974
). “
Pitch, consonance, and harmony
,”
J. Acoust. Soc. Am.
55
,
1061
1069
.
86.
Terhardt
,
E.
(
1978
). “
Psychoacoustic evaluation of musical sounds
,”
Percept. Psychophys.
23
(
6
),
483
492
.
87.
Tomlinson
,
R. W. W.
, and
Schwarz
,
D. W. F.
(
1988
). “
Perception of the missing fundamental in nonhuman primates
,”
J. Acoust. Soc. Am.
84
,
560
565
.
88.
Vaughan, Jr., H. G., and Arezzo, J. C. (1988). “The neural basis of event-related potentials,” in Human-Event Related Potentials, EEG Handbook (Revised Series, Vol. 3), edited by T. W. Picton (Elsevier, Amsterdam), pp. 45–96.
89.
Whitfield
,
I. C.
(
1980
). “
Auditory cortex and the pitch of complex tones
,”
J. Acoust. Soc. Am.
67
,
644
647
.
90.
Wolpaw
,
J. R.
, and
Penry
,
J. K.
(
1975
). “
A temporal component of the auditory evoked response
,”
Electroencephalogr. Clin. Neurophysiol.
39
,
609
620
.
91.
Wood
,
C. C.
, and
Wolpaw
,
J. R.
(
1982
). “
Scalp distribution of human auditory evoked potentials. II. Evidence for multiple sources and the involvement of auditory cortex
,”
Electroencephalogr. Clin. Neurophysiol.
54
,
25
38
.
92.
Zatorre
,
R. J.
(
1988
). “
Pitch perception of complex tones and human temporal-lobe function
,”
J. Acoust. Soc. Am.
84
,
566
572
.
93.
Zera
,
J.
,
Onsan
,
Z. A.
,
Nguyen
,
Q. T.
, and
Green
,
D. M.
(
1993
). “
Auditory profile analysis of harmonic signals
,”
J. Acoust. Soc. Am.
93
,
3431
3441
.
94.
Zerlin
,
S.
(
1986
). “
Electrophysiological evidence for the critical band in humans
,”
J. Acoust. Soc. Am.
79
,
1612
1616
.
95.
Zwicker
,
E.
,
Flottorp
,
G.
, and
Stevens
,
S. S.
(
1957
). “
Critical bandwidth in loudness summation
,”
J. Acoust. Soc. Am.
29
,
548
557
.
This content is only available via PDF.
You do not currently have access to this content.