A weakly nonlinear theory of the thermoacoustic instability in gas-filled tubes is developed in the time domain by exploiting the difference between the instability time scale and the period of standing waves. By carrying the expansion to fourth order in the perturbation parameter, explicit results for the initial growth, nonlinear evolution, and final saturation are obtained. The dependence of the saturation amplitude upon the temperature difference in the stack, the tube geometry, stack plate spacing, Prandtl number, and other parameters is illustrated.

1.
Akhavan
,
R.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
(
1991
). “
An investigation of transition to turbulence in bounded oscillatory Stokes flows. I. Experiment
,”
J. Fluid Mech.
225
,
395
422
.
2.
Atchley, A. A., Bass, H. E., and Hofler, T. J. (1990). “Development of nonlinear waves in a thermoacoustic prime mover,” in Frontiers in Nonlinear Acoustics, edited by M. F. Hamilton and D. T. Blackstock (Elsevier, New York), pp. 603–608.
3.
Brewster
,
J. R.
,
Raspet
,
R.
, and
Bass
,
H. E.
(
1997
). “
Temperature discontinuities between elements of thermoacoustic devices
,”
J. Acoust. Soc. Am.
102
,
3355
3360
.
4.
Cao
,
N.
,
Olson
,
J. R.
,
Swift
,
G. W.
, and
Chen
,
S.
(
1996
). “
Energy flux density in a thermoacoustic couple
,”
J. Acoust. Soc. Am.
99
,
3456
3464
.
5.
Cooper
,
W. L.
,
Yang
,
K. T.
, and
Nee
,
V. W.
(
1993
). “
Fluid mechanics of oscillatory modulated flows and associated applications in heat and mass transfer—A review
,”
J. Energy Heat Mass Transfer
15
,
1
19
.
6.
Gopinath
,
A.
,
Tait
,
N. L.
, and
Garrett
,
S. L.
(
1998
). “
Thermoacoustic streaming in a resonant channel: The time-averaged temperature distribution
,”
J. Acoust. Soc. Am.
103
,
1388
1405
.
7.
Hinch, E. J. (1991). Perturbation Methods (Cambridge University Press, Cambridge).
8.
Karpov, S. (2000). “Nonlinear Phenomena in Thermoacoustics and Bubbly Liquids,” Ph.D. thesis, Johns Hopkins University.
9.
Karpov
,
S.
, and
Prosperetti
,
A.
(
1998
). “
Linear thermoacoustic instability in the time domain
,”
J. Acoust. Soc. Am.
103
,
3309
3317
.
10.
Kevorkian, J., and Cole, J. D. (1996). Perturbation Methods in Applied Mathematics, 2nd ed. (Springer, New York).
11.
Morse, P. M., and Feshbach, H. (1953). Methods of Theoretical Physics (McGraw-Hill, New York).
12.
Murdock, J. A. (1991). Perturbations (Wiley, New York).
13.
Naylor, A. W., and Sell, G. R. (1982). Linear Operator Theory in Engineering and Science (Springer, New York), p. 502.
14.
Rott
,
N.
(
1969
). “
Damped and thermally driven acoustic oscillations in wide and narrow tubes
,”
Z. Angew. Math. Phys.
20
,
230
243
.
15.
Rott
,
N.
(
1976
). “
Thermally driven acoustic oscillations. IV. Tubes with variable cross section
,”
Z. Angew. Math. Phys.
27
,
197
224
.
16.
Rott
,
N.
(
1980
). “
Thermoacoustics
,”
Adv. Appl. Mech.
20
,
135
175
.
17.
Rott
,
N.
(
1983
). “
Thermally driven acoustic oscillations, VI. Excitation and power
,”
Z. Angew. Math. Phys.
34
,
609
626
.
18.
Swift
,
G. W.
(
1988
). “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
.
19.
Watanabe
,
M.
,
Prosperetti
,
A.
, and
Yuan
,
H.
(
1997
). “
A simplified model for linear and nonlinear processes in thermoacoustic prime movers. I. Model and linear theory
,”
J. Acoust. Soc. Am.
102
,
3484
3496
.
20.
Wheatley, J. (1986). “Intrinsically irreversible or natural heat engines,” in Frontiers in Physical Acoustics, edited by D. Sette (North-Holland, Amsterdam), pp. 35–475.
21.
Worlikar
,
A. S.
, and
Knio
,
O. M.
(
1996
). “
Numerical simulation of a thermoacoustic refrigerator. I. Unsteady adiabatic flow around the stack
,”
J. Comput. Phys.
127
,
424
451
.
22.
Worlikar
,
A. S.
, and
Knio
,
O. M.
(
1999
). “
Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack
,”
Numer. Heat Transfer
A35
,
49
-
65
.
23.
Worlikar
,
A. S.
,
Knio
,
O. M.
, and
Klein
,
R.
(
1998
). “
Numerical simulation of a thermoacoustic refrigerator. II. Stratified flow around the stack
,”
J. Comput. Phys.
144
,
299
324
.
24.
Yuan
,
H.
,
Karpov
,
S.
, and
Prosperetti
,
A.
(
1997
). “
A simplified model for linear and nonlinear processes in thermoacoustic prime movers. II. Nonlinear oscillations
,”
J. Acoust. Soc. Am.
102
,
3497
3506
.
This content is only available via PDF.
You do not currently have access to this content.