A new low-frequency ultrasonic device (50–100 kHz) in highly sharpened end sensors that behave as point sources were examined. The application of this new ultrasonic technique with two sensors coupled in the near field is to explore the relations between the physical properties measured through the evolution of the wave time of flight and structural changes during gel formation which is related to two factors: the ambient temperature and the mechanical resistance of the medium. The network evolution was interpreted by an approach based on the Flory model. The physical significance of this model was shown through a series of experiments using a low-frequency ultrasonic technique. Response curves demonstrate the different stages during gel formation.

1.
P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).
2.
W. H.
Stockmayer
, “
Theory of molecular size distribution and gel formation in branched-chain polymers
,”
J. Chem. Phys.
11
,
45
55
(
1943
).
3.
L. C.
Case
, “
Molecular distributions in polycondensations involving unlike reactants. VII. Treatment of reactants involving nonindependent groups
,”
J. Polym. Sci.
48
,
27
35
(
1960
).
4.
S. K.
Gupta
,
A.
Kumar
, and
A.
Bhargava
, “
Molecular weight distribution and moments for condensation polymerization of monomers having reactivity different from their homologues
,”
Polymer
20
,
305
310
(
1979
).
5.
B. E.
Eichinger
, “
Random elastic networks. I. Computer simulation of linked stars
,”
J. Chem. Phys.
75
,
1964
1979
(
1981
).
6.
M. W.
Allsopp
, “
The developement and importance of suspension PVC morphology
,”
Pure Appl. Chem.
53
,
449
465
(
1981
).
7.
P. L. San Biagio, D. Bulone, A. Emanuele, F. Madonia, L. Di Stefano, D. Giacomazza, M. Trapanese, M. B. Palma-Vittorelli, and M. U. Palma, “Spinodal demixing, percolation and gelation of biosttural polymers,” IUPAC 10th International Symposium on Polymer Networks, 40, Jerusalem, December, 1990.
8.
P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1989).
9.
D.
Stauffer
, “
Can percolation theory be applied to critical phenomena at gel point?
,”
Pure Appl. Chem.
53
,
1479
1487
(
1983
).
10.
D. Stauffer, Introduction to Percolation Theory (Taylor & Francis Ltd., London, 1985).
11.
J. P. Clerc, G. Giraud, J. Roussenq, R. Blanc, J. P. Carton, E. Guyon, H. Ottavi, and D. Stauffer, La Percolation: Modèles, simulation analogiques et numériques, Annales de Physique Vol. 8 (Masson, Paris, 1983).
12.
D. G. Dalgleish, Developments in Dairy Chemistry, edited by P. F. Fox (Applied Science, London, 1982), Vol. 1, Chap. 5.
13.
J. P. Mercier and E. Marechal, Chimie des Polymères 1st ed. (Presses Polytechniques et Universitaires Romandes, Lausanne, 1993), Chaps. 1, 3, 8.
14.
G. Nassar, “Etude et Optimisation d’un Dispositif Ultrasonore De Suivi en Ligne des propriétés viscoélastiques,” Doctoral dissertation, Valenciennes University-France, December 1997.
15.
F. L.
Degertekin
and
B. T.
Khuri-Yakub
, “
Hertzian contact transducers for nondestructive evaluation
,”
J. Acoust. Soc. Am.
99
,
299
308
(
1996
).
16.
F. L.
Degertekin
and
B. T.
Khuri-Yakub
, “
Single mode lamb wave excitation in thin plates by Hertzian contacts
,”
Appl. Phys. Lett.
69
(
2
),
146
148
(
1996
).
17.
F. L.
Degertekin
and
B. T.
Khuri-Yakub
, “
Lamb wave excitation by Hertzian contacts with applications in NDE
,”
IEEE Trans. Ultrason. Ferroelectr. Freq.
44
(
4
),
769
778
(
1996
).
18.
L.
Shuyu
, “
Study on the longitudinal–torsional composite mode exponential ultrasonic horns
,”
Ultrasonics
34
,
757
762
(
1996
).
19.
L.
Shuyu
, “
Study on the longitudinal–torsional composite vibration of a sectional exponential horn
,”
J. Acoust. Soc. Am.
102
,
1388
1393
(
1997
).
20.
J. P. Nikolovski and D. Royer, “Local and selective detection of acoustic waves at the surface of a material,” IEEE Ultrasonics Symposium (1997), 699–703.
21.
W. M. Madigosky, C. T. Swanson, and E. J. O’Neill, “Dynamic hardness tester and cure meter,” in Non-destructive Testing (Van Hemelrijck & Anastassopoulos, Balkema, Rotterdam, 1996), pp. 169–173.
22.
D.
Eensminger
, “
Solid cone in longitudinal half-wave resonance
,”
J. Acoust. Soc. Am.
32
,
194
196
(
1960
).
23.
J. F. Imbert, Analyse des Structures par Éléments Finis, 3rd ed. (Cepadues, 1995).
24.
P.
Walstra
and
V.
Vliet
, “
The physical chemistry of curd making
,”
Neth. Milk Dairy J.
40
,
241
259
(
1986
).
25.
P. F.
Fox
, “
Proteolysis during cheese manufacture and ripening. A review
,”
J. Dairy Sci.
72
,
1379
1385
(
1989
).
26.
D. G. Dalgleish, in Cheese: Chemistry, Physics and Microbiology, General Aspect, 2nd ed., edited by P. F. Fox (Chapman & Hall, London, 1993), Vol. 1, p. 69.
27.
Y. Noel, P. Flaud, and D. Quemada, Traitement Industriel des Fluides Alimentaires Non Newtoniens, Tome II, Actes du 2 ème Colloque la Baule, 11–13 September 1989, pp. 215–224.
28.
D. J.
McMahon
and
R. J.
Brown
, “
Enzymic coagulation of caseine micelles
,”
J. Dairy Sci.
67
,
919
929
(
1984
).
29.
S.
Visser
, “
Proteolytic enzymes and their action on milk proteins. A review
,”
Neth. Dairy J.
35
,
65
68
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.