Moderate acoustic trauma results in decreased cochlear sensitivity and frequency selectivity. This decrease is believed to be caused by damage to the cochlear amplifier that is associated with outer hair cells (OHCs) and their nonlinear electromechanical characteristics. A consequence of OHC nonlinearity is the acoustic enhancement effect, in which low-frequency electrically evoked otoacoustic emissions are enhanced by a simultaneous tone. The present study found that acoustic trauma reduced the acoustic enhancement effect and this reduction is correlated with the N1 threshold at the electrode site. This result is consistent with the theory that trauma affects the mechanoelectric transduction process, thus affecting cochlear mechanical nonlinearity. Acoustic trauma also reduced the cochlear microphonic in a way that suggests that the number of functioning tension-gated channels and the stiffness of the gating springs were decreased. In some cases, the electromechanical transduction process was also found to be affected by acoustic trauma.

1.
Ashmore
,
J. F.
(
1987
). “
A fast motile response in guinea pig outer hair cell: The cellular basis of the cochlear amplifier
,”
J. Physiol. (London)
388
,
323
347
.
2.
Borg
,
E.
,
Canlon
,
B.
, and
Engström
,
B.
(
1995
). “
Noise-induced hearing loss, literature review and experiments in rabbits
,”
Scand. Audiol. Suppl.
24
,
1
147
.
3.
Brownell
,
W. E.
,
Bader
,
C. R.
,
Bertrand
,
D.
, and
de Ribauperre
,
Y.
(
1985
). “
Evoked mechanical responses of isolated cochlear outer hair cells
,”
Science
277
,
194
196
.
4.
Cody
,
A. R.
, and
Russell
,
I. J.
(
1985
). “
Outer hair cells in the mammalian cochlear and noise-induced hearing loss
,”
Nature (London)
315
,
662
665
.
5.
Cody
,
A. R.
, and
Russell
,
I. J.
(
1988
). “
Acoustically induced hearing loss: Intracellular studies in the guinea pig cochlea
,”
Hear. Res.
35
,
59
70
.
6.
Dallos
,
P.
,
Billone
,
M. C.
,
Durrant
,
J. D.
,
Wang
,
C. Y.
, and
Raynor
,
S.
(
1972
). “
Cochlear inner and outer hair cells: Functional differences
,”
Science
177
,
356
358
.
7.
Davis
,
H.
(
1983
). “
An active processing of cochlear mechanics
,”
Hear. Res.
9
,
79
90
.
8.
Engström, H., Andes, H. W., and Bredberg, G. (1970). “Normal structure of the organ of Corti and the effect of noise-induced cochlear damage,” in Sensorineural Hearing Loss. A Ciba Foundation Symposium, edited by G. W. E. Wolstenholme and J. Knight (J & A Churchill, London), Vol. 197, pp. 127–156.
9.
Howard
,
J.
, and
Hudspeth
,
A. J.
(
1988
). “
Compliance of the hair bundle associated with gating of the mechanoelectrical transduction channels in the bullfrog’s saccular hair cell
,”
Neuron
1
,
189
199
.
10.
Hubbard
,
A. E.
, and
Mountain
,
D. C.
(
1990
). “
Hair cell forward and reverse transduction: differential suppression and enhancement
,”
Hear. Res.
43
,
269
272
.
11.
Hunter-Duvar, I. M. (1977). “Morphology of the normal and acoustically damaged cochlea,” in Scanning Electron Microscopy, Vol. 2 (ITT Research Institute, Chicago), pp. 421–428.
12.
Kachar
,
B.
,
Brownell
,
W. E.
,
Altschuler
,
R. A.
, and
Fex
,
J.
(
1986
). “
Electrokinetic shape changes in cochlear outer hair cells
,”
Nature (London)
322
,
365
367
.
13.
Kemp
,
D. T.
(
1978
). “
Stimulated acoustic emissions from within the human auditory system
,”
J. Acoust. Soc. Am.
64
,
1386
1391
.
14.
Kirk
,
D. L.
, and
Yates
,
G. K.
(
1996
). “
Frequency tuning and acoustic enhancement of electrically evoked otoacoustic emissions in the guinea pig cochlea
,”
J. Acoust. Soc. Am.
100
,
3714
3725
.
15.
Kirk
,
D. L.
, and
Yates
,
G. K.
(
1998
). “
4-Aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions
,”
Audiol. Neuro-Otol.
3
,
21
39
.
16.
Liberman
,
M. C.
, and
Beil
,
D. G.
(
1979
). “
Hair cell condition and auditory nerve response in normal and noise-damaged cochleas
,”
Acta Oto-Laryngol.
88
,
161
176
.
17.
Liberman
,
M. C.
, and
Kiang
,
N. Y. S.
(
1978
). “
Acoustic trauma in cats: Cochlear pathology and auditory-nerve activity.
Acta Oto-Laryngol.
358
,
1
63
.
18.
Liberman, M. C., and Mulroy, M. J. (1982). “Acute and chronic effects of acoustic trauma, cochlear pathology and auditory nerve pathophysiology,” in New Perspectives on Noise-Induced Hearing Loss, edited by R. P. Hammernik, D. Henderson, and R. Salvi (Raven, New York), pp. 105–136.
19.
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1989
). “
Rapid force production in the cochlea
,”
Hear. Res.
42
,
195
202
.
20.
Mountain, D. C., Hubbard, A. E., and McMullen, T. A. (1983). “Electromechanical processes in the cochlea,” in Mechanics of Hearing, edited by E. de Boer, and M. A. Viergever (Delft University Press, Delft), pp. 119–126.
21.
Murata
,
K.
,
Moriyama
,
T.
,
Hosokawa
,
Y.
, and
Minami
,
S.
(
1991
). “
Alternating current induced otoacoustic emissions in the guinea pig
,”
Hear. Res.
55
,
201
214
.
22.
Nakajima, H. H., Hubbard, A. E., and Mountain, D. C. (2000). “A physiologically-based nonlinear active feedback model of cochlea mechanics,” in Recent Developments in Auditory Mechanics, edited by H. Wada et al. (World Scientific, Singapore), pp. 202–208.
23.
Nakajima
,
H. H.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1998
). “
Nonlinear characteristics of electrically evoked otoacoustic emissions
,”
Hear. Res.
122
,
109
118
.
24.
Nakajima
,
H. H.
,
Olson
,
E. S.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1994
). “
Electrically-evoked otoacoustic emissions from the apical turns of the gerbil cochlea
,”
J. Acoust. Soc. Am.
96
,
786
794
.
25.
Nakajima
,
H. H.
,
Olson
,
E. S.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1996
). “
Acoustic overstimulation enhances low-frequency electrically-evoked otoacoustic emissions and reduces high-frequency emissions
,”
Aud. Neurosci.
3
,
79
99
.
26.
Neely
,
S. T.
, and
Kim
,
D. O.
(
1983
). “
An active cochlear model showing sharp tuning and high sensitivity
,”
Hear. Res.
9
,
123
130
.
27.
Nuttall
,
A. L.
, and
Ren
,
T.
(
1995
). “
Electromotile hearing: Evidence from basilar membrane motion and otoacoustic emissions
,”
Hear. Res.
92
,
170
177
.
28.
Patuzzi
,
R.
,
Johnstone
,
B. M.
, and
Sellick
,
P. M.
(
1984
). “
The alteration of the vibration of the basilar membrane produced by loud sound
,”
Hear. Res.
13
,
99
100
.
29.
Patuzzi
,
R. B.
,
Yates
,
G. K.
, and
Johnstone
,
B. M.
(
1989a
). “
The origin of the low-frequency microphonic in the first cochlear turn of guinea pig
,”
Hear. Res.
39
,
177
188
.
30.
Patuzzi
,
R. B.
,
Yates
,
G. K.
, and
Johnstone
,
B. M.
(
1989b
). “
Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma
,”
Hear. Res.
39
,
189
202
.
31.
Ren
,
T.
, and
Nuttall
,
A. L.
(
1995
). “
Extracochlear electrically evoked otoacoustic emissions: a model for in vivo assessment of outer hair cell electromotility
,”
Hear. Res.
92
,
178
183
.
32.
Ren
,
T.
, and
Nuttall
,
A. L.
(
1998a
). “
Acoustical modulation of electrically evoked otoacoustic emission in intact gerbil cochlea
,”
Hear. Res.
120
,
7
16
.
33.
Ren, T., and Nuttall, A. L. (1998b). “Multiple origins of the electrically evoked otoacoustic emission,” in Association for Research in Otolaryngology Abstracts, 21, p. 179, http://www.aro.org.
34.
Ren, T., and Nuttall, A. L. (1999). “Acoustical self-interference and magnification in the cochlea,” in Association for Research in Otolaryngology Abstracts, 22, p. 120, http://www.aro.org.
35.
Ren
,
T.
,
Nuttall
,
A. L.
, and
Miller
,
J. M.
(
1996
). “
Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea
,”
Hear. Res.
102
,
43
50
.
36.
Roddy
,
J.
,
Hubbard
,
A. E.
,
Mountain
,
D. C.
, and
Xue
,
S.
(
1994
). “
Effects of electrical biasing on electrically-evoked otoacoustic emissions
,”
Hear. Res.
73
,
148
154
.
37.
Sellick
,
P. M.
,
Patuzzi
,
R.
, and
Johnstone
,
B. M.
(
1982
). “
Measurement of the basilar membrane motion in the guinea pig using the Mossbauer technique
,”
J. Acoust. Soc. Am.
72
,
131
141
.
38.
Xue, S. (1993). “Measurement of basilar membrane motion and otoacoustic emissions in response to electrical and acoustic stimulation,” Ph.D. thesis, Boston University, Boston, MA.
39.
Xue
,
S.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1993
). “
Acoustic enhancement of electrically-evoked otoacoustic emissions reflects basilar membrane tuning: Experiment results
,”
Hear. Res.
70
,
121
126
.
40.
Xue
,
S.
,
Mountain
,
D. C.
, and
Hubbard
,
A. E.
(
1996
). “
Electrically-evoked otoacoustic emissions: direct comparisons with basilar membrane motion
,”
Aud. Neurosci.
2
,
301
308
.
41.
Yates, G. K., and Kirk, D. L. (1997). “Modulation of electrically-evoked emissions by forward transduction gates in the outer hair cell,” in Association for Research in Otolaryngology Abstracts, 20, p. 123, http://www.aro.org.
This content is only available via PDF.
You do not currently have access to this content.