The insertion loss of wide and double barriers is investigated through scale model experiments. Such configurations appear in outdoor sound propagation problems such as highway noise reduction and community noise control. The Biot–Tolstoy–Medwin (BTM) time domain wedge formulation for multiple diffraction [J. Acoust. Soc. Am. 72, 1005–1013 (1982)] is used to predict the acoustic response of an impulsive source. Evaluation of the insertion loss at discrete frequencies is accomplished via the fast Fourier transform (FFT). Good agreement has been found between the BTM model and experimental data for all configurations tested.

1.
T.
Isei
,
T. F. W.
Embleton
, and
J. E.
Piercy
, “
Noise reduction by barriers on finite impedance ground
,”
J. Acoust. Soc. Am.
67
,
46
58
(
1980
).
2.
J.
Nicolas
,
T. F. W.
Embleton
, and
J. E.
Piercy
, “
Precise model measurements versus theoretical prediction of barrier insertion loss in presence of the ground
,”
J. Acoust. Soc. Am.
73
,
44
54
(
1983
).
3.
E. M.
Salomons
, “
Sound propagation in complex outdoor situations with a non-refracting atmosphere: model based on analytical solutions for diffraction and reflection
,”
Acustica
83
,
436
454
(
1997
).
4.
F.
Oberhettinger
, “
On the diffraction and reflection of waves and pulses by wedges and corners
,”
J. Res. Natl. Bur. Stand.
61
,
343
365
(
1958
).
5.
M. A.
Biot
and
I.
Tolstoy
, “
Formulation of wave propagation in infinite media by normal coordinates with an Application to diffraction
,”
J. Acoust. Soc. Am.
29
,
381
391
(
1957
).
6.
R.
Raspet
,
J.
Ezell
, and
S.
Coggeshall
, “
Diffraction of an explosive transient
,”
J. Acoust. Soc. Am.
79
,
1326
1334
(
1986
).
7.
H.
Medwin
, “
Shadowing by finite noise barriers
,”
J. Acoust. Soc. Am.
69
,
1060
1064
(
1981
).
8.
J. P.
Chambers
and
Y. H.
Berthelot
, “
Time-domain experiments on the diffraction of sound by a step discontinuity
,”
J. Acoust. Soc. Am.
96
,
1887
1892
(
1994
).
9.
A. I.
Papadopoulos
and
C. G.
Don
, “
A study of barrier attenuation by using acoustic impulses
,”
J. Acoust. Soc. Am.
90
,
1011
1018
(
1991
).
10.
D.
Chu
, “
Impulse response of density contrast wedge using normal coordinates
,”
J. Acoust. Soc. Am.
86
,
1883
1896
(
1989
).
11.
D.
Chu
, “
Exact solution for a density contrast shallow-water wedge using normal coordinates
,”
J. Acoust. Soc. Am.
87
,
2442
2450
(
1990
).
12.
S.
Li
and
C. S.
Clay
, “
Sound transmission experiments from an impulsive source near rigid wedges
,”
J. Acoust. Soc. Am.
84
,
2135
2143
(
1988
).
13.
S.
Li
,
D.
Chu
, and
C. S.
Clay
, “
Time domain reflections and diffractions from facet-wedge constructions: Acoustic experiments including double diffractions
,”
J. Acoust. Soc. Am.
96
,
3715
3720
(
1994
).
14.
H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic, New York, 1997), p. 712.
15.
H.
Medwin
,
E.
Childs
, and
G. M.
Jebsen
, “
Impulse studies of double diffraction: A discrete Huygens interpretation
,”
J. Acoust. Soc. Am.
72
,
1005
1013
(
1982
).
16.
A. D.
Pierce
, “
Diffraction of sound around corners and over wide barriers
,”
J. Acoust. Soc. Am.
55
,
941
955
(
1974
).
17.
H. G.
Jonasson
, “
Sound reduction by barriers on the ground
,”
J. Sound Vib.
22
,
113
126
(
1972
).
18.
C. Menge, C. Rossano, G. Anderson, and C. Bajdek, FHWA Traffic Noise Model Version 1.0 Technical Manual (1995), p. 24.
19.
R.
Armstrong
, “
Highway traffic noise barrier construction trends
,”
Wall Journal
26
,
12
19
(
1996
).
20.
G. J. Wadsworth, “Scale model experiments on the insertion loss of wide and double barriers,” M.S. Thesis, University of Mississippi (1998).
This content is only available via PDF.
You do not currently have access to this content.