A passive cavitation detector (PCD) identifies cavitation events by sensing acoustic emissions generated by the collapse of bubbles. In this work, a dual passive cavitation detector (dual PCD), consisting of a pair of orthogonal confocal receivers, is described for use in shock wave lithotripsy. Cavitation events are detected by both receivers and can be localized to within 5 mm by the nature of the small intersecting volume of the focal areas of the two receivers in association with a coincidence detection algorithm. A calibration technique, based on the impulse response of the transducer, was employed to estimate radiated pressures at collapse near the bubble. Results are presented for the in vitro cavitation fields of both a clinical and a research electrohydraulic lithotripter. The measured lifetime of the primary growth-and-collapse of the cavitation bubbles increased from 180 to 420 μs as the power setting was increased from 12 to 24 kV. The measured lifetime compared well with calculations based on the Gilmore–Akulichev formulation for bubble dynamics. The radiated acoustic pressure 10 mm from the collapsing cavitation bubble was measured to vary from 4 to 16 MPa with increasing power setting; although the trends agreed with calculations, the predicted values were four times larger than measured values. The axial length of the cavitation field correlated well with the 6-dB region of the acoustic field. However, the width of the cavitation field (10 mm) was significantly narrower than the acoustic field (25 mm) as bubbles appeared to be drawn to the acoustic axis during the collapse. The dual PCD also detected signals from “rebounds,” secondary and tertiary growth-and-collapse cycles. The measured rebound time did not agree with calculations from the single-bubble model. The rebounds could be fitted to a Rayleigh collapse model by considering the entire bubble cloud as an effective single bubble. The results from the dual PCD agreed well with images from high-speed photography. The results indicate that single-bubble theory is sufficient to model lithotripsy cavitation dynamics up to time of the main collapse, but that upon collapse bubble cloud dynamics becomes important.

1.
Akulichev, V. A. (1971). in High-Intensity Ultrasonic Fields, edited by L. D. Rozenberg (Plenum, New York), pp. 239–259.
2.
Averkiou
,
M. A.
, and
Cleveland
,
R. O.
(
1999
). “
Modeling of an electrohydraulic lithotripter with the KZK equation
,”
J. Acoust. Soc. Am.
106
,
102
112
.
3.
Bailey
,
M. R.
,
Blackstock
,
D. T.
,
Cleveland
,
R. O.
, and
Crum
,
L. A.
(
1999
). “
Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors: II. Cavitation fields
,”
J. Acoust. Soc. Am.
106
,
1149
1160
.
4.
Blackstock, D. T., Hamilton, M. F., and Pierce, A. D. (1998). “Progressive waves in lossless and lossy fluids,” in Nonlinear Acoustics, edited by M. F. Hamilton and D. T. Blackstock (Academic, New York).
5.
Cathignol
,
D.
,
Sapozhnikov
,
O. A.
, and
Zhang
,
J.
(
1997
). “
Lamb waves in piezoelectric focused radiator as a reason for discrepancy between O’Neil’s formula and experiment
,”
J. Acoust. Soc. Am.
101
,
1286
1297
.
6.
Chaussy
,
C.
,
Brendel
,
W.
, and
Schmiedt
,
E.
(
1980
). “
Extracorporeally induced destruction of kidney stones by shock waves
,”
Lancet
2
,
1265
1268
.
7.
Chaussy, C., ed. (1982). Extracorporeal Shock Wave Lithotripsy: New Aspects in the Treatment of Kidney Stone Disease (Karger, Basel).
8.
Choi
,
M. J.
,
Coleman
,
A. J.
, and
Saunders
,
J. E.
(
1993
). “
The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter
,”
Phys. Med. Biol.
38
,
1561
1573
.
9.
Christopher
,
P. T.
(
1994
). “
Modeling the Dornier HM3 lithotripter
,”
J. Acoust. Soc. Am.
96
,
3088
3095
.
10.
Church
,
C. C.
(
1989
). “
A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter
,”
J. Acoust. Soc. Am.
86
,
215
227
.
11.
Cleveland, R. O., Bailey, M. R., Hartenbaum, B., Fineberg, N., Lokhandwalla, M., McAteer J. A., and Sturtevant, B. (2000). “Design and characterisation of a research electrohydraulic lithotripter patterned after the Dornier HM3,” Rev. Sci. Instrum. (accepted).
12.
Coleman
,
A. J.
,
Saunders
,
J. E.
,
Crum
,
L. A.
, and
Dyson
,
M.
(
1987
). “
Acoustic cavitation generated by an extracorporeal shockwave lithotripter
,”
Ultrasound Med. Biol.
13
,
69
76
.
13.
Coleman
,
A. J.
, and
Saunders
,
J. E.
(
1989
). “
A survey of the acoustic output of commercial extracorporeal shock wave lithotripters
,”
Ultrasound Med. Biol.
15
,
213
227
.
14.
Coleman
,
A. J.
,
Choi
,
M. J.
, and
Saunders
,
J. E.
(
1991
). “
Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter
,”
Ultrasound Med. Biol.
17
,
245
255
.
15.
Coleman
,
A. J.
,
Choi
,
M. J.
,
Saunders
,
J. E.
, and
Leighton
,
T. G.
(
1992
). “
Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter
,”
Ultrasound Med. Biol.
18
,
267
281
.
16.
Coleman
,
A. J.
,
Choi
,
M. J.
, and
Saunders
,
J. E.
(
1996
). “
Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy
,”
Ultrasound Med. Biol.
22
,
1079
1087
.
17.
Crum
,
L. A.
(
1988
). “
Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL
,”
J. Urol. (Baltimore)
40
,
1587
1590
.
18.
Dalecki
,
D.
,
Raeman
,
C. H.
,
Child
,
S. Z.
, and
Carstensen
,
E. L.
(
1996
). “
A test for cavitation as a mechanism for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter
,”
Ultrasound Med. Biol.
22
,
493
496
.
19.
Delacretaz
,
G.
,
Rink
,
K.
,
Pittomvils
,
G.
,
Lafaut
,
J. P.
,
Vandeursen
,
H.
, and
Boving
,
R.
(
1995
). “
Importance of the implosion of ESWL-induced cavitation bubbles
,”
Ultrasound Med. Biol.
21
,
97
103
.
20.
Delius
,
M.
,
Denk
,
R.
,
Berding
,
C.
,
Liebich
,
H.
,
Jordan
,
M.
, and
Brendel
,
W.
(
1990
). “
Biological effect of shock waves: Cavitation by shock waves in piglet liver
,”
Ultrasound Med. Biol.
16
,
467
472
.
21.
Ding
,
Z.
, and
Gracewski
,
S. M.
(
1994
). “
Response of constrained and unconstrained bubbles to lithotripter shock wave pulses
,”
J. Acoust. Soc. Am.
96
,
3636
3644
.
22.
Eller
,
A.
, and
Flynn
,
H. G.
, (
1965
). “
Rectified diffusion during nonlinear pulsations of cavitation bubbles
,”
J. Acoust. Soc. Am.
37
,
493
501
.
23.
Evan, A. P., and McAteer, J. A. (1996). “Q-Effects of shock wave lithotripsy, in Kidney Stones: Medical and Surgical Management, edited F. Coe, C. Pak, and G. M. Preminger (Raven, New York), pp. 549–570.
24.
Gilmore, F. R. (1952). The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid (California Institute of Technology, Pasadena, CA), Rep. No. 26-4, pp. 1–40.
25.
Holmes
,
S. A. V.
, and
Whitfield
,
H. N.
(
1991
). “
The current status of lithotripsy
,”
Br. J. Urol.
68
,
337
344
.
26.
Howard
,
D. D.
, and
Sturtevant
,
B.
(
1997
). “
In vitro study of the mechanical effects of shockwave lithotripsy
,”
Ultrasound Med. Biol.
23
,
1107
1122
.
27.
Huber
,
P.
,
Debus
,
J.
,
Peschke
,
P.
,
Hahn
,
E. W.
, and
Lorenz
,
W. J.
(
1994
). “
In vivo detection of ultrasonically induced cavitation by a fibre-optic technique
,”
Ultrasound Med. Biol.
20
,
811
825
.
28.
Huber
,
P.
,
Debus
,
J.
,
Jöchle
,
K.
,
Simiantonakis
,
I.
,
Jenne
,
J.
,
Rastert
,
R.
,
Spoo
,
J.
,
Lorenz
,
W. J.
, and
Wannenmacher
,
M.
(
1999
). “
Control of cavitation activity by different shockwave pulsing regimes
,”
Phys. Med. Biol.
44
,
1427
1437
.
29.
Jochle
,
K.
,
Debus
,
J.
,
Lorenz
,
W. J.
, and
Huber
,
P.
(
1996
). “
A new method of quantitative cavitation assessment in the field of a lithotripter
,”
Ultrasound Med. Biol.
22
,
329
338
.
30.
Kaude
,
J. V.
,
Williams
,
C. M.
,
Millner
,
M. R.
,
Scott
,
K. N.
, and
Finlayson
,
B.
(
1985
). “
Renal morphology and function immediately after extracorporeal shock-wave lithotripsy
,”
Am. J. Roentgenol.
145
,
305
313
.
31.
Landau, I. D., and Lifshitz, E. M. (1987). Fluid Mechanics, 2nd ed. (Pergamon, New York).
32.
Lifshitz
,
D. A.
,
Williams
, Jr.,
J. C.
,
Sturtevant
,
B.
,
Conners
,
B. A.
,
Evan
,
A. P.
, and
McAteer
,
J. A.
(
1997
). “
Quantization of shock wave cavitation damage in vitro
,”
Ultrasound Med. Biol.
23
,
461
471
.
33.
Lingeman, J. E. (1996). “Extracorporeal shock wave lithotripsy devices: Are we making progress,” in New Developments in the Management of Urolithiasis, edited by J. E. Lingeman and G. M. Preminger (Igaku-Shoin, New York).
34.
O’Neil
,
H. T.
(
1949
). “
Theory of focusing radiators
,”
J. Acoust. Soc. Am.
21
,
516
526
.
35.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in Fortran, 2nd ed. (Cambridge University Press, Cambridge).
36.
Pye
,
S. D.
, and
Dineley
,
J. A.
(
1999
). “
Characterization of cavitational activity in lithotripsy fields using a robust electromagnetic probe
,”
Ultrasound Med. Biol.
3
,
451
471
.
37.
Rudenko, O. V., and Soluyan, S. I. (1977). Theoretical Foundations of Nonlinear Acoustics (Plenum, New York).
38.
Sass
,
W.
,
Braunlich
,
M.
,
Dreyer
,
H.-P.
,
Matura
,
E.
,
Folberth
,
W.
,
Priesmeyer
,
H.-G.
, and
Seifert
,
J.
(
1991
). “
The mechanisms of stone disintegration by shock waves
,”
Ultrasound Med. Biol.
17
,
239
243
.
39.
Vogel
,
A.
, and
Lauterborn
,
W.
(
1988
). “
Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries
,”
J. Acoust. Soc. Am.
84
,
719
731
.
40.
Wurster
,
C.
,
Staudenraus
,
J.
, and
Eisenmenger
,
W.
(
1994
). “
The fibre optic probe hydrophone
,”
Nature (London)
2
,
941
944
.
41.
Zhong
,
P.
,
Cioanta
,
I.
,
Cocks
,
F. H.
, and
Preminger
,
G. M.
(
1997
). “
Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
J. Acoust. Soc. Am.
101
,
2940
2950
.
42.
Zhong
,
P.
,
Cioanta
,
I.
,
Zhu
,
S.
,
Cocks
,
F. H.
, and
Preminger
,
G. M.
(
1998
). “
Effects of tissue constraint on shock-wave induced bubble expansion in vivo
,”
J. Acoust. Soc. Am.
104
,
3126
3129
.
43.
Zhong
,
P.
,
Lin
,
H.
,
Xi
,
X.
,
Zhu
,
S.
, and
Bhogte
,
E. S.
(
1999
). “
Shock wave-inertial microbubble interaction: Methodology, physical characterization and bioeffect study
,”
J. Acoust. Soc. Am.
105
,
1997
2009
.
This content is only available via PDF.
You do not currently have access to this content.