We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in nonlinear media, under the successive approximation of the KZK equation. The result shows that the nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited diffracting, and that the main beamwidth of the nth-order harmonic is exactly 1/n times that of the fundamental.

1.
J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 356.
2.
J.
Durnin
,
J. Opt. Soc. Am. A
4
,
651
(
1987
).
3.
J.-y.
Lu
,
IEEE Trans. Ultrason. Ferroelectr. Freq.
44
,
839
(
1997
), and references therein.
4.
J.
Durnin
,
J. J.
Miceli
, and
J. H.
Eberly
,
Phys. Rev. Lett.
58
,
1499
(
1987
).
5.
J.-y.
Lu
and
J. F.
Greenleaf
,
IEEE Trans. Ultrason. Ferroelectr. Freq.
37
,
438
(
1990
).
6.
J.-y.
Lu
and
J. F.
Greenleaf
,
IEEE Trans. Ultrason. Ferroelectr. Freq.
39
,
19
(
1992
).
7.
D.
Ding
and
Z.
Lu
,
Appl. Phys. Lett.
68
,
608
(
1996
);
D.
Ding
and
Z.
Lu
,
Appl. Phys. Lett.
,
71
,
723
(
1997
).
8.
J. Synnevag and S. Holm, IEEE Ultrason. Symp., Sendai, Oct. 1998.
9.
M. A. Averkiou, D. N. Roundhill, and J. E. Powers, IEEE Ultrason. Symp., Toronto, Oct. 1997.
10.
T.
Wulle
and
S.
Herminghaus
,
Phys. Rev. Lett.
70
,
1401
(
1993
).
11.
S.
Aanonsen
,
T.
Barkve
,
J. N.
Tjøtta
, and
S.
Tjøtta
,
J. Acoust. Soc. Am.
75
,
749
(
1984
).
12.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1964).
13.
L.
Germain
and
J. D. N.
Cheeke
,
J. Acoust. Soc. Am.
83
,
942
(
1988
).
14.
D.
Rugar
,
J. Appl. Phys.
56
,
1338
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.