The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [, J. Acoust. Soc. Am. 106, 2008–2021 (1999)], but data were obtained only in a frequency range of 0.01–15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Biomechanics (Springer-Verlag, New York, 1993), pp. 277–292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [24, 1007–1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.

1.
Abramowitz, M., and Stegun, I. (1964). Handbook of Mathematical Functions (U.S. Department of Commerce, Washington, DC), p. 1027.
2.
Alipour, F., and Titze, I. R. (1983). “Simulation of particle trajectories of vocal fold tissue during phonation,” in Vocal fold Physiology: Biomechanics, Acoustics, and Phonatory Control, edited by I. R. Titze and R. C. Scherer (Denver Center for the Performing Arts, Denver, CO), pp. 183–190.
3.
Alipour, F., and Titze, I. R. (1988). “A finite element simulation of vocal fold vibrations,” Proceedings of Northeast Bioengineering Conference, IEEE Report 88 CH 2666-6, pp. 186–189.
4.
Barnes, H. A., Hutton, J. F., and Walters, K. (1989). An Introduction to Rheology (Elsevier, Amsterdam), pp. 1–10; 37–54; 97–114.
5.
Becker, R., and Doring, W. (1939). Ferronmagnetismus (Springer, Berlin).
6.
Berry
,
D. A.
, and
Titze
,
I. R.
(
1996
). “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
100
,
3345
3354
.
7.
Bilston
,
L. E.
, and
Thibault
,
L. E.
(
1996
). “
The mechanical properties of the human cervical spinal cord in vitro
,”
Ann. Biomed. Eng.
24
,
67
74
.
8.
Bird, R. B., Armstrong, R. C., and Hassager, O. (1977a). Dynamics of Polymeric Liquids. Fluid Mechanics (Wiley, New York), Vol. 1, pp. 129–204; 275–303.
9.
Bird, R. B., Hassager, O., Armstrong, R. C., and Curtiss, C. F. (1977b). Dynamics of Polymeric Liquids.Kinetic Theory (Wiley, New York), Vol. 2, pp. 471–580; 701–721.
10.
Chan, R. W. (1998). “Shear properties of vocal fold mucosal tissues and their effect on vocal fold oscillation,” unpublished Ph.D. dissertation, The University of Iowa, Iowa City, IA.
11.
Chan
,
R. W.
, and
Titze
,
I. R.
(
1998
). “
Viscosities of implantable biomaterials in vocal fold augmentation surgery
,”
Laryngoscope
108
,
725
731
.
12.
Chan
,
R. W.
, and
Titze
,
I. R.
(
1999a
). “
Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa
,”
Laryngoscope
109
,
1142
1149
.
13.
Chan
,
R. W.
, and
Titze
,
I. R.
(
1999b
). “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
106
,
2008
2021
.
14.
Chun
,
K. J.
, and
Hubbard
,
R. P.
(
1986
). “
Development of reduced relaxation function and stress relaxation with paired tendon
,”
Adv. Bioeng. (ASME)
2
,
162
163
.
15.
De Kee
,
D.
, and
Carreau
,
P. J.
(
1979
). “
A constitutive equation derived from Lodge’s network theory
,”
J. Non-Newtonian Fluid Mech.
6
,
127
143
.
16.
Ferry, J. D. (1980). Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York).
17.
Fung, Y. C. (1972). “Stress-strain history relations of soft tissues in simple elongation,” in Biomechanics: Its Foundations and Objectives, edited by Y. C. Fung, N. Perrone, and M. Anliker (Prentice-Hall, Englewood Cliffs, NJ), pp. 181–208.
18.
Fung, Y. C. (1981). Biomechanics. Mechanical Properties of Living Tissues (Springer-Verlag, New York), pp. 22–61.
19.
Fung, Y. C. (1993). Biomechanics. Mechanical Properties of Living Tissues, 2nd ed. (Springer-Verlag, New York), pp. 23–65; 242–320.
20.
Gray
,
S. D.
,
Titze
,
I. R.
,
Chan
,
R.
, and
Hammond
,
T. H.
(
1999
). “
Vocal fold proteoglycans and their influence on biomechanics
,”
Laryngoscope
109
,
845
854
.
21.
Hammond
,
T. H.
,
Zhou
,
R.
,
Hammond
,
E. H.
,
Pawlak
,
A.
, and
Gray
,
S. D.
(
1997
). “
The intermediate layer: A morphologic study of the elastin and hyaluronic acid constituents of normal human vocal folds
,”
J. Voice
11
,
59
66
.
22.
Lodge
,
A. S.
(
1968
). “
Constitutive equations from molecular network theories for polymer solutions
,”
Rheol. Acta
7
,
379
392
.
23.
Mak
,
A. F.
(
1986
). “
Apparent viscoelastic behavior of articular cartilage-Contributions from intrinsic matrix viscoelasticity and interstitial fluid flow
,”
J. Biomech. Eng.
108
,
123
130
.
24.
Neubert
,
H. K. P.
(
1963
). “
A simple model representing internal damping in solid materials
,”
Aeronaut. Q.
14
,
187
197
.
25.
Pinto
,
J. G.
, and
Fung
,
Y. C.
(
1973
). “
Mechanical properties of the heart muscle in the passive state
,”
J. Biomech.
6
,
597
616
.
26.
Pinto
,
J. G.
, and
Patitucci
,
P. J.
(
1980
). “
Viscoelasticity of passive cardiac muscle
,”
J. Biomech. Eng.
102
,
57
61
.
27.
Price
,
J. M.
,
Patitucci
,
P. J.
, and
Fung
,
Y. C.
(
1979
). “
Mechanical properties of resting taenia coli smooth muscle
,”
Am. J. Physiol. (Cell Physiol.)
236
,
C211
C220
.
28.
Sauren
,
A. A. H. J.
, and
Rousseau
,
E. P. M.
(
1983
). “
A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung
,”
J. Biomech. Eng.
105
,
92
95
.
29.
Simon
,
B. R.
,
Coats
,
R. S.
, and
Woo
,
S. L-Y.
(
1984
). “
Relaxation and creep quasilinear viscoelastic models for normal articular cartilage
,”
J. Biomech. Eng.
106
,
159
164
.
30.
Spirt
,
A. A.
,
Mak
,
A. F.
, and
Wassell
,
R. P.
(
1989
). “
Nonlinear viscoelastic properties of articular cartilage in shear
,”
J. Orthop. Res.
7
,
43
49
.
31.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
(
1974
). “
Elastic and inelastic properties of the canine aorta and their variation along the aortic tree
,”
J. Biomech.
7
,
357
370
.
32.
Theodorsen, T., and Garrick, E. (1940). “Mechanism of flutter,” U.S. National Advisory Committee on Aeronautics, Report #685.
33.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
34.
Titze
,
I. R.
(
1992
). “
Phonation threshold pressure: A missing link in glottal aerodynamics
,”
J. Acoust. Soc. Am.
91
,
2926
2935
.
35.
Titze, I. R., and Chan, R. W. (1998). “The effect of shear thinning in vocal fold tissues—or, why we can phonate over two octaves in pitch,” Proceedings of the 16th International Congress on Acoustics and the 135th Acoustical Society of America Meeting, Vol. IV, pp. 2669–2670.
36.
Titze, I. R., and Story, B. H. (1999). “Rules for controlling low-dimensional vocal fold models with muscle activities,” J. Acoust. Soc. Am. (in review).
37.
Wagner
,
K. W.
(
1913
). “
Zur theorie der unvoll Kommener dielektrika
,”
Ann. Phys. (Leipzig)
40
,
817
855
.
38.
Woo
,
S. L-Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
(
1981
). “
The time and history-dependent viscoelastic properties of the canine medial collateral ligament
,”
J. Biomech. Eng.
103
,
293
298
.
39.
Woo
,
S. L-Y.
,
Gomez
,
M. A.
,
Woo
,
Y-K.
, and
Akeson
,
W. H.
(
1982
). “
Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties
,”
Biorheology
19
,
385
396
.
40.
Woo
,
S. L-Y.
,
Johnson
,
G. A.
, and
Smith
,
B. A.
(
1993
). “
Mathematical modeling of ligaments and tendons
,”
J. Biomech. Eng.
115
,
468
473
.
41.
Woo
,
S. L-Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
(
1980
). “
Quasi-linear viscoelastic properties of normal articular cartilage
,”
J. Biomech. Eng.
102
,
85
90
.
42.
Zhu
,
W.
,
Iatridis
,
J. C.
,
Hlibczuk
,
V.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
(
1996
). “
Determination of collagen-proteoglycan interactions in vitro
,”
J. Biomech.
29
,
773
783
.
43.
Zhu
,
W. B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
(
1986
). “
Intrinsic quasi-linear viscoelastic behavior of the extracellular matrix of cartilage
,”
Trans. Orthopaedic Res. Soc.
11
,
407
.
44.
Zhu
,
W. B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
(
1988
). “
A second order rheological model to predict the time-dependent behavior of proteoglycan solutions
,”
Adv. Bioeng. (ASME)
8
,
187
190
.
45.
Zhu
,
W. B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
(
1991
). “
The density and strength of proteoglycan-proteoglycan interaction sites in concentrated solutions
,”
J. Biomech.
24
,
1007
1018
.
46.
Zhu, W. B., and Mow, V. C. (1990). “Viscometric properties of proteoglycan solutions at physiological concentrations,” in Biomechanics of Diarthrodial Joints, edited by V. C. Mow, A. Ratcliffe, and S. Woo (Springer-Verlag, New York), pp. 313–344.
This content is only available via PDF.
You do not currently have access to this content.