When sinusoidal amplitude modulation (SAM) is applied to noise or tone carriers, the stimuli can generate audible distortion products in the region of the modulation frequency. As a result, when bandpass-filtered SAM noise is used to investigate temporal processing, a band of unmodulated noise is typically positioned at the modulation frequency to mask any distortion products. This study was designed to investigate the distortion products for bandpass noise carriers, and so reduce ambiguity about the form of this distortion and its role in perception. The distortion consists of two distortion-noise bands and a distortion tone at the modulation frequency. In the first two experiments, the level and phase of the distortion tone are measured using two different experimental paradigms. In the third experiment, modulation-frequency difference limens are measured for filtered SAM noise and it is shown that performance deteriorates markedly when the distortion tone is canceled. In a fourth experiment, masked threshold is measured at low frequencies for bands of high-frequency, unmodulated noise with the same levels and spectra as the SAM noises in the earlier experiments. The results confirm that unmodulated noise also produces quadratic distortion which may explain some aspects of earlier reports on remote masking.

1.
Bilger
,
R. C.
(
1958
). “
Intensive determinants of remote masking
,”
J. Acoust. Soc. Am.
30
,
817
824
.
2.
Blamey
,
P. J.
,
Dowell
,
Y. C.
,
Tong
,
Y. C.
, and
Clark
,
G. M.
(
1984
). “
An acoustic model of a multiple-channel cochlear implant
,”
J. Acoust. Soc. Am.
76
,
97
103
.
3.
Brown
,
A. M.
(
1993
). “
Distortion in the cochlea: Acoustic f2–f1 at low stimulus levels
,”
Hear. Res.
70
,
160
166
.
4.
Burns
,
E. M.
, and
Viemeister
,
N. F.
(
1976
). “
Nonspectral pitch
,”
J. Acoust. Soc. Am.
60
,
863
868
.
5.
Burns
,
E. M.
, and
Viemeister
,
N. F.
(
1981
). “
Played again SAM: Further observations on the pitch of amplitude-modulated noise
,”
J. Acoust. Soc. Am.
70
,
1655
1660
.
6.
Carney
,
L.
(
1993
). “
A model for the response of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
7.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
8.
Eddins
,
D. A.
(
1993
). “
Amplitude modulation detection of narrow-band noise: Effects of absolute bandwidth and frequency region
,”
J. Acoust. Soc. Am.
93
,
470
479
.
9.
Formby
,
C.
(
1985
). “
Differential sensitivity to tonal frequency and to the rate of amplitude modulation of broadband noise by normally hearing listeners
,”
J. Acoust. Soc. Am.
78
,
70
77
.
10.
Formby
,
C.
, and
Muir
,
K.
(
1988
). “
Modulation and gap detection for broadband and filtered noise signals
,”
J. Acoust. Soc. Am.
84
,
545
550
.
11.
Giguere
,
C.
, and
Woodland
,
P. C.
(
1994
). “
A computational model of the auditory periphery for speech and hearing research. I. Ascending path
,”
J. Acoust. Soc. Am.
95
,
331
342
.
12.
Giguere
,
C.
,
Smoorenburg
,
G. F.
, and
Kunov
,
H.
(
1997
). “
The generation of psychoacoustic combination tones in relation to two-tone suppression effects in a computational model
,”
J. Acoust. Soc. Am.
102
,
2821
2830
.
13.
Greenwood
,
D. D.
(
1971
). “
Aural combination tones and auditory masking
,”
J. Acoust. Soc. Am.
50
,
502
543
.
14.
Greenwood
,
D. D.
(
1991
). “
Critical bandwidth and consonance in relation to cochlear frequency-position coordinates
,”
Hear. Res.
54
,
164
208
.
15.
Hall
,
J. L.
(
1972
). “
Auditory distortion products f2–f1 and 2f1–f2,
J. Acoust. Soc. Am.
51
,
1863
1871
.
16.
Hanna
,
T. E.
(
1992
). “
Discrimination and identification of modulation rate using a noise carrier
,”
J. Acoust. Soc. Am.
91
,
2122
2128
.
17.
Houtsma
,
A. J. M.
,
Wicke
,
R. W.
, and
Ordubadi
,
A.
(
1980
). “
Pitch of amplitude-modulated low-pass noise and predictions by temporal and spectral theories
,”
J. Acoust. Soc. Am.
67
,
1312
1322
.
18.
Langner
,
G.
(
1992
). “
Periodicity coding in the auditory system
,”
Hear. Res.
60
,
115
142
.
19.
Levitt
,
H.
(
1971
). “
Transformed up–down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
20.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1987
). “
Formulae describing frequency selectivity as a function of frequency and level and their use in calculating excitation patterns
,”
Hear. Res.
28
,
209
225
.
21.
Patterson
,
R. D.
,
Johnson-Davies
,
D.
, and
Milroy
,
R.
(
1978
). “
Amplitude modulated noise: The detection of modulation versus the detection of modulation rate
,”
J. Acoust. Soc. Am.
63
,
1904
1911
.
22.
Pierce
,
J. R.
,
Lipes
,
R.
, and
Cheetham
,
C.
(
1977
). “
Uncertainty concerning the direct use of time information in hearing: Place cues in white-spectra stimuli
,”
J. Acoust. Soc. Am.
61
,
1609
1621
.
23.
Schulze
,
H.
, and
Langner
,
G.
(
1997
). “
Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Meriones unguiculatus): Two different coding strategies for pitch and rhythm?
J. Comp. Physiol. A
181
,
651
663
.
24.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1997
). “
The effects of frequency region and bandwidth on the temporal modulation transfer function
,”
J. Acoust. Soc. Am.
102
,
1799
1810
.
25.
Wier
,
C. C.
,
Jesteadt
,
W.
, and
Green
,
D. M.
(
1977
). “
Frequency discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
61
,
178
184
.
26.
Zwicker
,
E.
(
1955
). “
Der ungewoehnliche Amplitudengang der nichtlinearen Verzerrungen des Ohres
,”
Acustica
5
,
67
74
.
This content is only available via PDF.
You do not currently have access to this content.