The problem of estimating the sound pressure generated at individual eardrums is systematically investigated. In audiometry, the reference to the pressure at the eardrum is usually realized by using a coupler such as the IEC 711 ear simulator, which is intended to approximate an average ear. The errors caused by individually shaped ear canals are calculated for a typical audiometric earphone (Beyer DT 48) in combination with the IEC 711 ear simulator and with an “ideal” coupler. These errors can reach 15 dB and are clearly more important than deviations of the ear simulator from an average ear. In order to obtain correct estimations, the chain matrices of individual ear canals have to be determined. Best estimates are obtained using the “reflectance phase method,” but the “pressure minima method” also provides surprisingly good results, except in narrow frequency ranges. The reflectance phase method is checked using a physical model of the ear canal and the middle ear. The resulting errors of estimation remain within a limit of 3 dB up to more than 10 kHz.

1.
S. T.
Neely
and
M. P.
Gorga
, “
Comparison between intensity and pressure as measures of sound level in the ear canal
,”
J. Acoust. Soc. Am.
104
,
2925
2934
(
1998
).
2.
H.
Hudde
and
A.
Engel
, “
Measuring and modeling basic properties of the human middle ear and ear canal. Part I. Model structure and measuring techniques
,”
Acust./Acta Acust.
84
,
720
738
(
1998
).
3.
H.
Hudde
and
A.
Engel
, “
Measuring and modeling basic properties of the human middle ear and ear canal. Part II: Ear canal, middle ear cavities, eardrum, and ossicles
,”
Acust./Acta Acust.
84
,
894
913
(
1998
).
4.
H.
Hudde
and
A.
Engel
, “
Measuring and modeling basic properties of the human middle ear and ear canal. Part III: Eardrum impedances, transfer functions, and complete model
,”
Acust./Acta Acust.
84
,
1091
1108
(
1998
).
5.
H.
Fastl
, “
Comparison of DT 48, TDH 49, and TDH 39 earphones
,”
J. Acoust. Soc. Am.
66
,
702
703
(
1979
).
6.
H.
Fastl
and
H.
Fleischer
, “
Freifeldübertragungsmaße verschiedener elektrodynamischer und elektrostatischer Kopfhörer
,”
Acustica
39
,
182
187
(
1978
).
7.
R. M.
Cox
, “
NBS-9A coupler-to-eardrum transformation: TDH-39 and TDH-49 earphones
,”
J. Acoust. Soc. Am.
79
,
120
123
(
1986
).
8.
H. C.
Martin
,
G. F.
Westwood
, and
J. M.
Bamford
, “
Real-ear to coupler differences in children having otitis media with effusion
,”
Br. J. Audiol.
30
,
71
78
(
1996
).
9.
H. C.
Martin
,
K. J.
Munro
, and
D. H.
Langer
, “
Real-ear to coupler differences in children with grommets
,”
Br. J. Audiol.
31
,
63
69
(
1997
).
10.
I. R.
Swan
and
S.
Gatehouse
, “
The value of routine in-the-ear measurement of hearing aid gain
,”
Br. J. Audiol.
29
,
271
277
(
1995
).
11.
J. C. K.
Chan
and
C. D.
Geisler
, “
Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal
,”
J. Acoust. Soc. Am.
87
,
1237
1247
(
1990
).
12.
M. R.
Stinson
and
B. W.
Lawton
, “
Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution
,”
J. Acoust. Soc. Am.
85
,
2492
2503
(
1989
).
13.
K. N.
Stevens
,
R. B.
Berkovitz
,
G. D.
Kidd
, Jr.
, and
M.
Green
, “
Calibration of ear canals for audiometry at high frequencies
,”
J. Acoust. Soc. Am.
81
,
470
484
(
1987
).
14.
H.
Hudde
,
A.
Engel
, and
A.
Lodwig
, “
A wide-band precision acoustic measuring head
,”
Acust./Acta Acust.
82
,
895
904
(
1996
).
15.
H. Hudde, “Kopfhörer-Impulsantworten im Gehörgang und im Mittelohr,” in Fortschritte der Akustik—DAGA'91 Bad Honnef: DPG-GmbH (1991), pp. 609–612.
16.
S.
Gilman
and
D. D.
Dirks
, “
Acoustics of ear canal measurement of eardrum SPL in simulators
,”
J. Acoust. Soc. Am.
80
,
783
793
(
1986
).
17.
A. Lodwig, “Ein System zur Anpassung von Hörgeräten: Meßtechnik, patientenbezogene Modellierung, Optimierung der Komponenten,” Ph.D. thesis, Faculty of Electrical Engineering, Ruhr-Universität Bochum, Shaker Verlag, Aachen, 1998.
18.
D. H.
Keefe
,
J. C.
Bulen
,
K. H.
Arehart
, and
E. M.
Burns
, “
Ear-canal impedance and reflection coefficient in human infants and adults
,”
J. Acoust. Soc. Am.
94
,
2617
2638
(
1993
).
19.
S. E.
Voss
and
J. B.
Allen
, “
Measurement of acoustic impedance and reflectance in the human ear canal
,”
J. Acoust. Soc. Am.
95
,
372
384
(
1994
).
20.
P.-E.
Sanborn
, “
Predicting hearing aid response in real ears
,”
J. Acoust. Soc. Am.
103
,
3407
3417
(
1998
).
21.
J. J. Zwislocki, “An acoustic coupler for earphone calibration,” Special NASA report. LSC-S-7, Syracuse University, Syracuse, New York (1970).
22.
S.
Mehrgardt
and
V.
Mellert
, “
Transformation characteristics of the external human ear
,”
J. Acoust. Soc. Am.
61
,
1567
1576
(
1977
).
23.
W. M.
Rabinowitz
, “
Measurements of the acoustical input immittance of the human ear
,”
J. Acoust. Soc. Am.
70
,
1025
1035
(
1981
).
24.
H.
Hudde
, “
Measurement of the eardrum impedance of human ears
,”
J. Acoust. Soc. Am.
73
,
242
247
(
1983
).
25.
K.
Okabe
,
S.
Tanaka
,
H.
Hamada
,
T.
Miura
, and
H.
Funai
, “
Acoustical impedance measurement on normal ears of children
,”
J. Acoust. Soc. Jpn.
9
,
287
294
(
1988
).
26.
M.
Joswig
, “
Impulse response measurement of individual ear canals and impedances at the eardrum in man
,”
Acustica
77
,
270
282
(
1993
).
27.
M. M.
Sondhi
and
B.
Gopinath
, “
Determination of vocal-tract shape from impulse response at the lips
,”
J. Acoust. Soc. Am.
49
,
1867
1873
(
1971
).
28.
M. R.
Schroeder
, “
Determination of the geometry of the human vocal tract by acoustic measurements
,”
J. Acoust. Soc. Am.
41
,
1002
1010
(
1967
).
29.
D.
Hammershoi
and
H.
Moeller
, “
Sound transmission to and within the human ear canal
,”
J. Acoust. Soc. Am.
100
,
408
427
(
1996
).
30.
H. Taschke, Ch. Weistenhöfer, and H. Hudde, “Ein akustomechanisches Mittelohrmodell in Originalgröße,” in Fortschritte der Akustik-DAGA 98, Dtsch. Ges. Akustik, Oldenburg (1998), pp. 296–297.
This content is only available via PDF.
You do not currently have access to this content.