This paper presents a phenomenological model of the cochlea. It consists of a bank of nonlinear time-varying parallel filters and an active distributed feedback. Realistic filter shapes are obtained with the all-pole gamma-tone filter (APGF), which provides both a good approximation of the far more complex wave propagation or cochlear mechanics models and a very simple implementation. Special care has been taken in modeling nonlinear properties in order to mimic the responses of the cochlea to complex stimuli. As a result, the model reproduces several observed phenomena including compression, two-tone suppression, and suppression of tones by noise. The distributed feedback, based on physiological evidence from outer hair cell (OHC) functioning, controls the damping parameter of the APGF and provides good modeling of both low-side and high-side suppression. Responses to more complex stimuli as well as a study of the model’s parameters are also presented. Areas of application of this type of model include understanding of signal coding in the cochlea and auditory nerve, development of hearing aids, speech analysis, as well as input to neural models of higher auditory centers.

1.
Aertsen
,
A.
, and
Johannesma
,
P.
(
1980
). “
Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli
,”
Biol. Cybern.
38
,
223
234
.
2.
Cai
,
Y.
, and
Geisler
,
D.
(
1996
). “
Suppression in auditory-nerve fiber of cats using low-side suppressors. III. Model results
,”
Hearing Res.
96
,
126
140
.
3.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
4.
Cheatham
,
M.
, and
Dallos
,
P.
(
1990
). “
Comparison of low- and high-side two-tone suppression in inner hair cell and organ of Corti responses
,”
Hearing Res.
50
,
193
210
.
5.
Costalupes
,
J. A.
(
1985
). “
Representation of tones in noise in the responses of auditory nerve fibers in cats
,”
J. Neurosci.
5
,
3261
3269
.
6.
Costalupes
,
J. A.
,
Young
,
E. D.
, and
Gibson
,
D. J.
(
1984
). “
Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat
,”
J. Neurophysiol.
51
,
1326
1344
.
7.
Dallos
,
P.
(
1985
). “
Response characteristics of mammalian cochlear hair cells
,”
J. Neurosci.
5
,
1591
1608
.
8.
Dallos
,
P.
(
1986
). “
Neurobiology of cochlear inner and outer hair cells: Intracellular recordings
,”
Hearing Res.
22
,
185
198
.
9.
de Boer
,
E.
(
1975
). “
Synthetic whole-nerve action potential for the cat
,”
J. Acoust. Soc. Am.
58
,
1030
1045
.
10.
Delgutte
,
B.
(
1990
). “
Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level
,”
Hearing Res.
49
,
225
246
.
11.
Eriksson, J. L., and Robert, A. (1998). “A simple nonlinear active cochlear model with distributed feedback,” in NOLTA 98 Proceedings.
12.
Flanagan, J. (1962). “Computer simulation of basilar membrane motion,” in Fourth International Congress on Acoustics.
13.
Geisler
,
C. D.
(
1990
). “
Evidence for expansive power functions in the generation of the discharges of ‘low- and medium-spontaneous’ auditory-nerve fibers
,”
Hearing Res.
44
,
1
12
.
14.
Geisler
,
C. D.
, and
Sinex
,
D. G.
(
1980
). “
Responses of primary auditory fibers to combined noise and tonal stimuli
,”
Hearing Res.
3
,
317
334
.
15.
Geisler
,
D. C.
, and
Greenberg
,
S.
(
1986
). “
A two-stage nonlinear cochlear model possesses automatic gain control
,”
J. Acoust. Soc. Am.
80
,
1359
1363
.
16.
Geisler
,
D. C.
, and
Nuttall
,
A.
(
1997
). “
Two-tone suppression of basilar membrane vibrations in the base of the guinea pig cochlea using ‘low-side’ suppressors
,”
J. Acoust. Soc. Am.
102
,
430
440
.
17.
Giguère
,
C.
, and
Wooland
,
P. C.
(
1994
). “
A computational model of the auditory periphery for speech and hearing research. I. Ascending path
,”
J. Acoust. Soc. Am.
95
,
331
342
.
18.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid waveform compression on the basilar membrane as multiple bandpass nonlinearity filtering
,”
Hearing Res.
49
,
39
60
.
19.
Goldstein
,
J. L.
(
1995
). “
Relations among compression, suppression, and combinations tones in mechanical responses of the basilar membrane: data and MBPNL model
,”
Hearing Res.
89
,
52
68
.
20.
Greenwood
,
D. D.
(
1961
). “
Critical bandwidth and the frequency coordinates of the basilar membrane
,”
J. Acoust. Soc. Am.
33
,
1344
1356
.
21.
Greenwood
,
D. D.
(
1990
). “
A cochlea frequency-position function for several species-29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
22.
Hewitt
,
M.
, and
Meddis
,
R.
(
1991
). “
An evaluation of eight computer models of mammalian inner hair-cell function
,”
J. Acoust. Soc. Am.
90
,
904
917
.
23.
Hudspeth
,
A.
(
1997
). “
Mechanical amplification of stimuli by hair cells
,”
Curr. Opin. Neurobiol.
7
,
480
486
.
24.
Jenison
,
R. L.
(
1991
). “
A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers
,”
J. Acoust. Soc. Am.
90
,
773
786
.
25.
Kanis
,
L.-J.
, and
de Boer
,
E.
(
1994
). “
Two-tone suppression in a locally active nonlinear model of the cochlea
,”
J. Acoust. Soc. Am.
96
,
2156
2165
.
26.
Kates
,
J. M.
(
1991
). “
A time-domain digital cochlear model
,”
IEEE Trans. Signal Process.
39
,
2573
2592
.
27.
Liberman
,
M.
(
1982
). “
The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency
,”
J. Acoust. Soc. Am.
72
,
1441
1449
.
28.
Lyon, R. F. (1996). “The all-pole gammatone filter and auditory model,” in Forum Acusticum, April ’96, Antwerp, Belgium.
29.
Lyon, R. F. (1997). “All-pole modes of auditory filtering,” in Diversity in Auditory Mechanics, edited by Lewis et al. (World Scientific, Singapore).
30.
Meddis
,
R.
(
1986
). “
Simulation of mechanical to neural transduction in the auditory receptor
,”
J. Acoust. Soc. Am.
79
,
702
711
.
31.
Meddis
,
R.
(
1988
). “
Simulation of mechanical to auditory-neural transduction: Further studies
,”
J. Acoust. Soc. Am.
83
,
1056
1063
.
32.
Mountain, D. C., and Hubbard, A. E. (1996). “Computational analysis of hair cell and auditory nerve processes,” in Auditory Computation, edited by A. N. Popper and R. R. Fay (Springer, New York), Chap. 4.
33.
Palmer
,
A. R.
, and
Evans
,
E. F.
(
1982
). “
Intensity coding in the auditory periphery of the cat: Responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise
,”
Hearing Res.
7
,
305
323
.
34.
Patterson
,
R. D.
,
Allerhand
,
M. H.
, and
Giguère
,
C.
(
1995
). “
Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform
,”
J. Acoust. Soc. Am.
98
,
1890
1894
.
35.
Patterson, R. D., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1988). “Spiral VOS Final Report-Part A: The Auditory Filterbank,” Tech. Report MRC Applied Psychology Unit, Cambridge, England.
36.
Patuzzi
,
R. B.
,
Yates
,
G. K. M.
, and
Johnstone
,
B.
(
1989
). “
Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma
,”
Hearing Res.
39
,
189
202
.
37.
Poon
,
P. W.
, and
Brugge
,
J. F.
(
1993
). “
Sensitivity of auditory nerve fibers to spectral notches
,”
J. Neurophysiol.
70
,
655
665
.
38.
Rhode, W. S., and Greenberg, S. (1992). “Physiology of the cochlear nuclei,” in The Mammalian Auditory Pathway: Neurophysiology, edited by A. N. Popper and R. R. Fay (Springer, New York), Chap. 3.
39.
Rhode
,
W. S.
, and
Greenberg
,
S.
(
1994
). “
Encoding of amplitude modulation in the cochlear nucleus of the cat
,”
J. Neurophysiol.
71
,
1797
1825
.
40.
Ruggero
,
M. A.
,
Robles
,
L.
,
Rich
,
N. C.
, and
Recio
,
A.
(
1992
). “
Basilar membrane responses to two-tone and broadband stimuli
,”
Philos. Trans. R. Soc. Lond.
336
,
307
315
.
41.
Russell
,
I.
,
Cody
,
A.
, and
Richardson
,
G.
(
1986
). “
The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro
,”
Hearing Res.
22
,
199
216
.
42.
Sokolowski
,
B. H.
,
Sachs
,
M. B.
, and
Goldstein
,
J. L.
(
1989
). “
Auditory nerve rate-level functions for two-tone stimuli: Possible relation to basilar membrane nonlinearity
,”
Hearing Res.
41
,
115
124
.
43.
Temchin
,
A.
,
Rich
,
N.
, and
Ruggero
,
M.
(
1997
). “
Low-frequency suppression of auditory nerve responses to characteristic frequency tones
,”
Hearing Res.
113
,
29
56
.
44.
Zwicker
,
E.
(
1979
). “
A model describing nonlinearities in hearing by active process with saturation
,”
Biol. Cybern.
35
,
243
250
.
This content is only available via PDF.
You do not currently have access to this content.