Oscillating thermal diffusion in a sound wave in a mixture of two gases is remarkably effective for separating the components of the mixture. We consider this separation process in boundary-layer approximation, with zero temperature gradient and zero concentration gradient along the direction of sound propagation. In the boundary layer, the combination of thermal diffusion with the oscillating temperature gradient and oscillating velocity gradient leads to second-order time-averaged fluxes of the two components of the mixture in opposite directions, parallel to the wave-propagation direction. The oscillating thermal diffusion also adds to the dissipation of acoustic power in the boundary layer, modifying thermal-relaxation dissipation but leaving viscous dissipation unchanged.

1.
P. S.
Spoor
and
G. W.
Swift
, “
Mode locking of acoustic resonators and its application to vibration cancellation in acoustic heat engines
,”
J. Acoust. Soc. Am.
106
,
1353
1362
(
1999
).
2.
A. M.
Dykhne
,
A. F.
Pal’
,
V. D.
Pis’mennyi
,
V. V.
Starostin
, and
M. D.
Taran
, “
Dynamics of gas-mixtures separation in the field of a sound wave
,” Zh. Eksp. Teor. Fiz. 88, 1976–1983 (1985). [English translation:
Sov. Phys. JETP
61
,
1171
1175
(
1985
).]
3.
V. B.
Bozhdankevich
,
A. M.
Dykhne
,
A. F.
Pal’
,
V. D.
Pis’mennyi
,
V. V.
Pichugin
,
A. N.
Starostin
, and
M. D.
Taran
, “
Thermodiffusional separation of gas mixtures in the field of a sound wave
,” Dokl. Akad. Nauk SSSR 288, 605–608 (1986). [English translation:
Sov. Phys. Dokl.
31
,
428
430
(
1986
).]
4.
W. L. M. Nyborg, “Acoustic streaming,” in Physical Acoustics, Volume IIB, edited by W. P. Mason (Academic, New York, 1965), pp. 265–331.
5.
G. W.
Howell
, “
Separation of isotopes by oscillatory flow
,”
Phys. Fluids
31
,
1803
1805
(
1988
).
6.
R.
Raspet
,
C. J.
Hickey
, and
J. M.
Sabatier
, “
The effect of mass transfer on sound propagation in cylindrical tubes using the low reduced frequency approximation
,”
J. Acoust. Soc. Am.
105
,
65
73
(
1999
).
7.
D. M. Ruthven, Ed., Encyclopedia of Separation Technology (Wiley, New York, 1997).
8.
G. W.
Swift
, “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
(
1988
).
9.
R. S.
Reid
,
W. C.
Ward
, and
G. W.
Swift
, “
Cyclic thermodynamics with open flow
,”
Phys. Rev. Lett.
80
,
4617
4620
(
1998
).
10.
K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic, New York, 1959).
11.
S. L.
Garrett
,
J. A.
Adeff
, and
T. J.
Hofler
, “
Thermoacoustic refrigerator for space applications
,”
AAIA J. Thermophys. Heat Trans.
7
,
595
599
(
1993
).
12.
M. E. Poese, “Performance measurements on a thermoacoustic refrigerator driven at high amplitudes, Master’s thesis, The Pennsylvania State University, 1998. Applied Research Laboratory.
13.
W. C.
Ward
and
G. W.
Swift
, “
Design environment for low amplitude thermoacoustic engines (DeltaE)
,”
J. Acoust. Soc. Am.
95
,
3671
3672
(
1994
). Fully tested software and user’s guide available from Energy Science and Technology Software Center, U.S. Department of Energy, Oak Ridge, Tennessee. To review DeltaE’s capabilities, visit the Los Alamos thermoacoustics web site at www.lanl.gov/thermoacoustics/. For a beta-test version, contact [email protected] (Bill Ward) or [email protected] (Greg Swift) by email.
14.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
15.
The hydraulic radius is the ratio of gas volume to gas-solid contact surface area.
16.
N.
Rott
, “
Damped and thermally driven acoustic oscillations in wide and narrow tubes
,”
Z. Angew. Math. Phys.
20
,
230
243
(
1969
).
17.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1982).
18.
F. W.
Giacobbe
, “
Estimation of Prandtl numbers in binary mixtures of helium and other noble gases
,”
J. Acoust. Soc. Am.
96
,
3568
3580
(
1994
).
19.
K. P.
Srivastava
, “
Mutual diffusion of binary mixtures of helium, argon, and xenon at different temperatures
,”
Physica (Utrecht)
25
,
571
578
(
1959
).
20.
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1939).
21.
B. E.
Atkins
,
R. E.
Bastick
, and
T. L.
Ibbs
, “
Thermal diffusion in mixtures of inert gases
,”
Proc. R. Soc. London, Ser. A
172
,
142
158
(
1939
).
This content is only available via PDF.
You do not currently have access to this content.